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CHAPTER I. INTRODUCTION

The work presented in this thesis is concerned with modeling of
millimeter-wave impact avalanche transit-time (IMPATT) diodes. The IMPATT
is currently the most important semiconductor device for generation
and amplification of power in the millimeter-wave frequency range.
Difficulties arise in the modeling of these devices because of their
submicron dimensions and high operating frequencies. Device models
based on the well known "drift and diffusion" description of
electron and hole transport are not expected to always be applicable
for such small dimensions and high frequencies, so it is necessary to
have more detailed models, both to establish the circumstances under
which the drift and diffusion approximation fails and to model devices

to which drift and diffusion based analyses cannot be applied. This

e e ——

thesis describes the development of a more general transport model,
the development of a computer simulation based on the model, and the
results obtained using the simulation.

This introductory chapter consists of three sections. The first
two establish the context of the present work by providing reviews of
the principles and performance capabilities of IMPATT diodes and of
approaches to modeling charge transport in semiconductors. The third

section describes the organization of the remainder of the thesis.

1.1 IMPATT Devices

1.1.1 Bagic Operating Principles and Experimental State of

the Art. The use of carrier transit-time effects to produce negative

resistance in a semiconductor device was first proposed by Shockley
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in 1954.1 In 1958, Read? presented an analysis of a diode structure
in which use of transit-time effects would be combined with carrier
injection by impact ionization. The fundamental characteristics of
Read-type device operation can be understood by considering the
operation of an idealized device, whose doping and dc electric field
profiles are shown in Fig. 1.1.° The figure also shows a sinusoidal
RF terminal voltage and the idealized forms of the injected and induced
current wave forms which result when the magnitude of the dec bias
voltage is Just below that required for reverse breakdown.

The doping profile is chosen so that under reverse bias a
narrow "ionization" region of high field exists near the p-n junction.
At the beginning of the RF cycle, the field in this region is slightly
below threshold for avalanche breskdown by impact ionization. As
terminal voltage increases, the threshold is passed, and the number of
carriers in the ionization region begins to increase. This continues
until the midpoint of the cycle when the field in the ionization region
drops once again below threshold. The electrons generated in the
ionization region are injected into the lower-field "drift" regionm,
where, if the field is strong enough, they travel at an approximately
constant velocity. If the length of the drift region is suchthat the
drift transit time is half the RF period, the motion of the electrons
induces a flow of current in the diode terminals which is approximately
180 degrees out of phase with the terminal voltage, giving rise to
negative resistance. As the cycle ends, the drifting electrons are
collected by the right-hand contact, and the process repeats. All
devices which operate by this combination of injection by impact

jonization and drift across a depleted region are known as IMPATT
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diodes, though their structure may differ considerably from that
shown in Fig. 1.1.

In the operation of a real IMPATT device, various departures
from the ideal behavior summarized in Fig. 1.1 occur. The space
charge of the carriers which accumulate during the first part of the RF
cycle depresses the field in the ionization region so that injection
occurs before the midpoint of the cyecle. This reduces the lag between
terminal voltage and current and degrades the device efficiency. Other
effects which lower efficiency include diffusive spreading of the
injected carrier pulse, impact ionization in the drift region, and
carrier drift at noﬁsaturated velocities.

Because of difficulties with device fabrication, IMPATT mode
operation was not realized until 1965, when Lee et al.* succeeded in
obtaining the first oscillations from a Read-type diode. About the
same time, Johnson et al.’ obtained oscillations from a simpler p-n
diode structure. IMPATT fabrication and circuit technology have
developed steadily since then, and today IMPATTs are widely used as
sources and amplifiers in low and medium power microwave and
millimeter-wave systems. Silicon IMPATTs in particular are presently
the most important solid state power source at high microwave and
millimeter-wave frequencies.G The experimental power and frequency .
state of the art for s variety of semiconductor devices is shown in
Fig. 1.2.7-2% fThis shows that Si IMPATTs are currently the highest
pover semiconductor devices for millimeter-wave power generation,
and that their useful frequency range extends to several hundred

gigahertz.
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1.1.2 Status of IMPATT Modeling. IMPATT operation is

inherently nonlinear, so detailed modeling of large-signal operation
requires the use of numerical methods. Most IMPATT models to date have
been intended for microwave devices and have been based on the conven-
tional drift and diffusion description of carrier iransport. In his
original paper, Read? assumed saturated drift, with equal velocities and
ionization rates for electrons and holes, and ignored diffusion. Other
workers have developed small-signal models which allowed for unequal

saturated velocities and ionization rates,?® arbitrary doping profiles, 3!

32 3 34

field-dependent velocities, and diffusion.? Gilden and Hines
derived a useful small;signal equivalent circuit for Read-type IMPATTs,
showing the tuning effects of the dc bias current. Evans and Haddad®®
developed the first closed-form expression for IMPATT large-signal
impedance, using the assumption of a small phase angle associated with
the drift transit time. This assumption, together with that of saturated
drift, was removed in a large-signal model developed by Greiling and
Haddad.3® A well known finite-difference simulation based on a compara-
tively complete version of the drift-diffusion model was developed by
Scharfetter and Gummel. 3’ Subsequent workers have greatly improved
the efficiency of finite~difference simulations based on the drift-
diffusion model, and have reached a better understanding of the .
numerical diffusion which is associated with finite-difference
schemes, ¥»3°
A few attempts have been made to develop IMPATT models which
account for additional physical effects.?? “! Tt will be shown that

none of these represents a self-consistent treatment using a

transport model better than conventional drift and diffusion.
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Development of such a model is one focus of the present work, and a
brief review of the spectrum of possible transport models will there-~
fore now be given to establish a context for the work described in

subsequent chapters.

1.2 Models of Electron Transport in Semiconductors

1.2.1 A Hierarchy of Approaches. The range of treatments of

electron transport in semiconductors is conveniently described with
reference to the hierarchy of approaches shown in Fig. 1.3.%2 Electron
transport in semiconductors is fundamentally quantum mechanical in
nature (because the deBroglie wavelength of electrons is not small
with respect to interatomic spacings), but can often be modeled using
the quasi-free-particle (QFP) approximation shown in the center of the
figure. In the QFP approximation, individual electrons are treated as
classical particles with effective mass supplied by band theory. The
concept of the hole is used to describe charge transport due to empty
states in the valence band. The approximation is based on the assumption that
collisions and acceleration due to externally applied electric fields
can be treated as perturbations to the band structure description of
the perfect lattice. This is generally true if the field is not so
large as to invalidate the use of Bloch functions for the electron
states, and if characteristic distances other than interatomic
spacings are large compared to the size of an electron wave packet:."3
Once the band structure and scattering rates are established, QFP
modeling of carrier transport can be accomplished by use of Monte
Carlo or Rees iterative"" techniques to solve the phase-space
transport equation“’ with the appropriate collision term. However,

such methods are generally too expensive for routine application
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Lo time domain simulation of devices, although they are used extensively
for modeling carrier transport phenomena.

When certain simplifications are made in order to produce more
economical device simulations, sub-QFP models result. Intead of
working in terms of individual carriers or the exact form of the dis-
tribution function, these models use approximate descriptions of the
distribution function. The distribution may be assumed to be in some
parameterized form, such as displaced Maxwellian or a truncated series
of Legendre polynomials, after which equations for the unknown param-
eters can be found from the phase-space transport equation. Alterna-
tively, Monte Car1§ data can be used to evaluate the phase-space
collision term directly, and the results used in simple energy and
momentumbalance relations. This latter approach requires no assump-
tions about the form of the velocity distribution, but intuitively
chosen balance relations are in fact inconsistent with the phase-
space eguation in spatially inhomogeneous situations.

The transport picture can be further simplified by assuming that
the velocity distribution is always in equilibrium with the local elec-
tric field. These will be referred to as "static" conditions elsewhere
in the thesis. The assumption is valid if the change in field strength
seen by moving carriers is small during the time required to reach
equilibrium. In this "static" approximation, carrier motion is
commonly described using the conventional drift-diffusion equation with
field-dependent drift velocity (or mobility), diffusion coefficients,
and ionization rates. In some situations where the static model is
almost appropriate for describing carrier transport, additional effects

can be accommodated by adding extra transport parameters. A

-9-
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"reparameterized" model has been used, for example, in dead space
modeling of the impact ionization prr)cess.“6

Above the QFP approximation in Fig. 1.3 are the partial and full
quantum regimes. In the partial guantum regime, the QFP approximation
is substantially valid, but additional quantum effects, such as band-to-
band tunneling or size quantization in one spatial dimension, are im-
posed on the basic framework. When characteristic dimension becomes
extremely small, full quantum treatment of transport becomes necessary.
This is still primarily the realm of the theoretical physicist.

1.2.2 Applications to IMPATT Modeling. The preceeding discussion

illuminates why the apﬁlicability of the static drift-diffusion model
to IMPATT modeling becomes suspect in the case of devices operating at
millimeter-wave frequencies. The drift-diffusion mol-t sssumés ouwuili-
brium between the carrier velocity distributions and 1ncal electric
field, but in millimeter-wave IMPATTs such equilibrium frequently may
not exist because it is possible for carriers in these devices to
experience significant changes in field strength during the time re-
quired to reach equilibrium. There are two main reasons why depar-
tures from equilibrium will be more significant éi millimeter-wave
frequencies than at microwave frequencies. First, design length
decreases, and doping levels increase with fréduency, so that drifting
carriers travel through steeper gradients of the field strength in
millimeter-wave devices than in microwave devices. This will affect
even the dc behavior. Second, the maximum rate of change of terminal
voltage, hence of internal field strength, tends to increase with fre-

quency, though this tendency is offset somewhat by the decrease in

RF amplitude which comes with decreasing device length.
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Use of a full QFP model would give full knowledge of the
carrier velocity distributions at all times. As was noted, however,
such models are generelly expensive when applied to simulation of
devices. The reason fcr this is that they keep track of excessive
information: the pcsition and velocity of each individual carrier. Much
of this information is not of first-order importance to a device simula-
tion, since, for the purpose of determining device terminal currents
and voltages, only the spatial distributions of carrier concentration
and average velocity are required.

Jne attractive approach to filling the need for a nonstatic model
for millimeter-wave IMPATTs is the methnd of conservation of erergy and
momentum, which falls in the sub-QFP regime of the hierarchy shown in
Fig. 1.3. This method is not based on the static assumption of
carrier field equilibrium and is much more economical for device
simulation than full QFP methods. A presentation of the equations of
energy and momentum conservation in transport in semiconductors, to-
gether with an extensive discussion of their relationship to various
lower order models, has been given by Blotekjaer.“7

The nature of the energy and momentum conserving model for
carrier transport can be briefly described as follows. The model
consists of Poisson's equation for the electric field gradient,
together with transport equations for three quantities as functions
of space and time: carrier concentration, average momentum, and
average energy. The first two quantities are required for determin-
ing device terminal behavior. The momentum equation keeps track of
the various contributions to the momentum of the aggregate of carriers,

such as gains due to acceleration by the field and losses due to
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collisions. This means that the average carrier velocity is not a
static function of field. The third quantity, average energy, is

not required for calculating device voltages and currents, but gives
the width of the velocity distribution, which affects the rate of
carrier diffusion and, to a first approximation, deferﬁines the rates
of collisions which affect momentum and determines the rate of impact
ionization.

Concentration, average velocity, and average energy are pro-
portional to the zeroth, first, and second moments of the velocity
distribution. In the.QFP approximation, the distribution is governed
b& the phase-space transport equation, so the carrier, momentum, and
energy transport equations required under the energy and momentum con-
serving model can be obtained by taking the first three velocity moments
of the phase-space equation. Using the resulting transport equations
in the energy and momentum conserving model guarantees that it will be
consistent with the phase-space equation to second order in the

velocity coordinate.

1.3 Outline of the Present Study

The goals of this study are to apply the principles of energy
and momentum conservation to simulation of millimeter-wave Si IMPATT
diodes, to produce & computer simulation embodying the principles,
to use the simulation to examine device behavior under dc and large-
signal conditions, and, by comparison with results obtained using a
conventional simulation, to establish the limits of applicability

of drift-diffusion simulation.
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The organization of the thesis is as follows. Chapter II
develops energy and momentum conserving transport equations appropriate
for carriers in Si. Chapter III examines numerical methods based on
finite-difference approximation of the transport equations derived in
Chapter II. A stable, accurate, and efficient numerical
procedure for their solution is developed. Chapter IV presents results
from computer simulation of millimeter-wave Si IMPATT diodes. Results
from the new simulation are compared with results obteined using a
conventional drift-diffusion simulation for a variety of device lengths
and operating frequencies, and reasons for the observed differences
are discussed. Thé effects of various energy boundary conditions and
of realistic contact regions are also examined. Chapter V contains

discussion, conclusions, and suggestions for further research.
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CHAPTER II. THE TRANSPORT MODEL

This chapter describes the energy and momentum conserving
transport model which has been developed to provide a better des-
cription of carrier transport in Si IMPATT diodes than that provided
by the conventional drift-diffusion model. The contents of the chapter
are as follows. Section 1 presents a derivation of the collisionless
forms of the carrier, energy, and momentum transport equations, and
discusses the physical interpretations of their various terms. In
Section 2, functional forms and numerical values are obtained for terms
describing the effects of collision processes. Section 3 discusses
the differences between the resulting model and other nonstatic IMPATT
models, and also shows how, under certain conditions, the model limits
to the conventional one. Section 4 is a general discussion and

summary of the chapter.

2.1 The Collisionless Transport Equations

This section develops collisionless transport equations for carriers,
carrier energy and carrier momentum in Si.* The development presented
here and throughout much of the remainder of this chapter is given
in terms of electron transport only. The extensions to hole transport '
are readily apparent.

2.1.1 Distribution-Independent Analysis. The starting point

for building the energy and momentum conserving transport model is

the quasi-free-particle approximation described in Chapter I.

®Much of the material in this section is based on the treatment of
Duderstadt and Martin."’

Ay
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The approximation allows carriers to be treated as classical particles
with effective masses and collision rates determined from the ~nergy
band structure and perturbation analysis. The motion of the carriers
can be followed by keeping track of their positions and velocities. It
is convenient to do so by keeping track of the carrier distribution
function, which gives the carrier concentration in six-dimensional
{location and velocity) phase space as a function of time.

In the absence of collisions, the concentration N(r,v,t) at the
phase point (;};) and time t will, according to the Liouville
theorem,"® follow its trajectory in phase space unchanged. A short
time At later, it will reach the point [r + vat,v + (F/m)at],
where F is the force acting and m the effective mass in the neighbor-
hood of (;,;). The only change in N between the two points will be due
to collisions which scatter carriers into or away from the neighborhood

of (r,v). This can be described by writing

N[T + AtV + (F/m)at,t + at] - N(F,v,t) _ S

At At ?

(2.1)

where GCN is the change due to collisions. 1In the limit as At approaches

zero, Eq. 2.1 becomes

N

3t = w« veVN -

B ||

oN
OVVN + [SE}C . (2.2)

Equation 2.2 is the phase-space transport equation which des-
cribes the motion of carriers in the QFP approximation. The well
known Boltzmann transport equation is similar to Eq. 2.2, with a
collision term in the particular form which describes collision

effects in & dilute gas.
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Since N is a phase-space density, the densities of carriers,
mean carrier momentum, and meancarrier energy in coordinate space
can be defined in terms of the zeroth, first, and second velocity

moments of N:

n(r,t) = [n(?ﬁ,t)aav : (2.3)
whn(F,0)0(F,0) = jm;m;,v,t) ady (2.4)

and
n(F thw(r,8) = J%m[;VN(;,V,t) ady (2.5)

where n is the carrier concentration, u is the average velocity, w is
the average energy, andm* is the average over effective mass. It
will be assumed that m is constant. This is reasonable so long as
most of the carriers are fairly close to energy minima.

The energy and momentum conserving transport model consists of
transport equations for the quantities n, u, and w. The equations can
be derived by applying the method of moments to Eq. 2.2, the phase-
space transport equation, as will now be shcwn. It is convenient to
ignore the collision term in Eq. 2.2 for the time being; its effect on
the equations to be derived here is taken up in Section 2.2.

Part of the operation of taking a velocity moment of Eq. 2.2 can
be performed without regard for the form of a particular velocity
moment operator. If ¢ is any such operator, & general moment of Eq.

2.2 is given by

) :
I“’[at = - VewN - — va] d’v . (2.6)

Since ¢ is a function of v alone, Eq. 2.6 can be written as

<16~
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g—t J Ny d3v = -v-j Ny d3v + %-vavw ddv , (2.7)

where it is assumed that N approaches zero rapidly enough at the limits
of integration that the quantity f VV(Nw) adv is always negligible.
The carrier concentration isthe zercth velocity moment of N. With

Yy =1, Eq. 2.7 becomes
M o _ymw) . (2.8)

This is the usual carrier continuity equation, though no diffusion term
appears in it explicitly. The velocity u is the true average over the
velocity distribution rather than the field-dependent "drift velocity"
used in the static drift-diffusion model, so that the diffusion effects
which must be treated there in a separate term are here incorporated
into u.

For velocity, ¥ equals ;, and Eq. 2.7 becomes

I o g Wwoadv o+ £ N);fc.i_!— adv
m § 1 avi

= - V-J WON ddv o+ EJ N(I] av , (2.9)
where [I] is the identity tensor. The left-hand side of Eq. 2.9 can be

expanded and rewritten using Egq. 2.8, resulting in

£ o= -lv-JWNd3v+£+
n m

%v.(nﬁ) . (2.10)

The remaining integral can be rewritten as

S

v-J N adv = ;ll-v-l] (v - W(¥v - u)N a%v + J (uv + vu - wu)N d’v:[

o |-

v-& (P) +En] , (2.11)

<17-
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where [P] is & tensor defined by

P, = m J N(vi - ui)(v

1] -uJ) av . (2.12)

J
The remainder of the right-hand side of Eq. 2.11 can be expanded to

anu, -

i du 1 e = =
B, + nu, Sxi] = ~uv {nu) + u-vu . (2.13)

B = 3 v

Substituting for the integral in Eq. 2.10 results in

et

M/ . Wil

ot - ;av-[P] . (2.14)

Equation 2.1h describes the transport of average carrier velocity,
in which the divergence of [P] plays the role of a force field which
contributes to acceleration. The first term on the right of Eq.
2.1h is related to the divergence of veloeity flux. It is not in

"9 where the derivative opervator acts on the

"conservation form,
entire term, as in the corresponding term in Eq. 2.8. This is because
u is not, in fact, a conserved quantity in carrier transport; it
represents average, rather than total, momentum, and it is total

momentum which is conserved physically.

For energy, ¥ equals mvev/2. Substitution in Eq. 2.7 gives

v v»I YNvev ddv + gj va(?-?) asv . (2.15)

at

rolg

The second of the two integral terms in Eq. 2.15 can be simplified:

En -.— 3
5 J va(v v) d3v

[]
P
————
=2

e 2 (v2) a%v
i

= nFeu . (2.16)
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Since f Nusu(v - u) d3v is zero, the first of the integral terms

can be written as

g ve J YWNvev d¥v =

rolg

V.UG.; CTNE - TN div 4 [ o8 d3v]

= g.(ue[P] + Q) + nu-vw + wye(nuq) , (2.17

where the vector E is defined by

With the use of Egs. 2.8, 2.16 and 2.17, Eq. 2.15 becomes

W
ot

Equation 2.19 describes the transport of average energy w.
Here again, as in Eq. 2.1k, the flux divergence term uew is
in nonconservative form because average energy is not conserved
physically. The vector E is known in fluid mechanics as the heat

flow vector.
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@ = J%N(vi S )V - WeE - aty (2.18)

= = -E-w+'§-'ﬁ—%v-(ﬁ-[?] +4q) . (2.19)
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2.1.2 Dependence on the Velocity Distribution. Equations

2.8, 2.14, and 2.19 describe the transport of velocity-averaged quan-
tities, but their solution requires knowledge of the form of the
velocity distribution N, which appears in the definitionsof [P] and
E. Some form of the velocity distribution must be assumed for the
purpose of evaluating [P] and q. It should contain n, u, and w as
parameters, so that [P] and E'will be consistent with these. At the
same time, specifying the distribution beyond its second velocity
moment is impractical, since the energy and momentum censerving model
gives no information as to how the higher moments change with time.
For the purpose of finding [P] and q, it will be assumed that the
veloecity distribution is displaced Maxwellian in form, which
makes the integrations in Eqs. 2.12 and 2.18 particularly simple.
The displaced Maxwellian form whose first three moments are consis-
tent with n, E, and w is
3/2 - -
N = n[-gﬁ—b,r—]/ exp [- %X—ba—“'i] , (2.20)
c c

where k.b is Boltzmann's constant, and Tc is the carrier temperature,

defined by

|v - u|?N a3v

-
—
nols

3 -
2T, =

lf

= W -

(Vev + ueu - 2u-v)N av

rols

uen . (2.21)

g

Thus, the thermal component of w is 3kac/2, in keeping with the usual

idea of temperature.
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Changing variables to vi=v-u simplifies the integrations
in Egs. 2.12 and 2.18. Since N is even in v', integration over all v'
of a product of N with a function that is odd in any component of

v'owill give zero. Equations 2.12 and 2.18 then become

P, = J Nv!v'm d3v'
iJ i
= 0 , i#3]
= nkac , 1= (2.22)
and
= =2 t ) yr2 33
ay I 5 W) vy adv
J
= 0 , alli . (2.23)
Then Egs. 2.14 and 2.19 become
M| ggaedE_ 2 “lma
p S T UtVu e 2= VEI(W 2mu-u) (2.24)
and
W Geww + qEen ?—Vn;(w--l-mﬁn—l-) (2.25)
3t bt =3 2 ’ )

where q is the electronic charge and E is the electric field.

The forms in Egs. 2.8, 2.24, and 2.25 of the collisionless
transport equations are equivaler’ to the forms of the equations of
hydrodynamics describing the motion of an inviscid, compressible
fluid.5% The terms arising from [P] will be referred to as pressure
terms because the diagonal entries in [P] are just the pressure of
an ideal gas with concentration n at temperature Tc' The pressure
terms account for the momentum and energy imparted to carriers

traveling down a pressure gradient in the carrier "gas."
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The energy and momentum conserving transport model is not
exact in the QFP approximation because it is in terms of only the
first three velocity moments of N, rather than the exact form of N,
It should be noted that E has been eliminated going from Egs. 2.19
to 2.24 because the assumed displaced Maxwellian distribution is
symmetrical about u. Blotekjaer“7 has suggested that the model can
be improved by retaining nonzero E in the energy transport equation.
However, Bosch and Thim51 used an energy and momentum conserving model
to simulate transferred electron devices and found that the inclusion
of nonzero E had little effect on predicted device behavior. It will
be assumed here that the transport model will be sufficiently accurate
for use in device modeling without the inclusion of E in Eq. 2.25.
It will also be assumed that carrier transport in IMPATTS is one-

dimensional, so that henceforward the transport equations can be

written in scalar form.

2.2 Collision Terms

This section develops terms for inclusion in the carrier, energy,
and momentum transport equations which take into account the effects of
the phase-space collision term. The procedure followed in the previous
section was to find velocity moments of the collisionless phase-
space equation. The collision terms will be found using a different
procedure, for reasons which will be discussed.

¥
2.2.1 Physical Considerations. The modifications which are to

be made to the carrier, momentum, and energy transport equations,
Eqs. 2.8, 2.2h, and 2.25, must account for the rates at which carrier

concentration, mean velocity and mean energy are changing because of
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collision processes. These rates of change depend in reality on the
exact form of the distribution function, but this is not known under
the energy and momentum conserving model. The problem becomes one of
accurately approximating the rates of change with functions of

n, u, and w.

An obvious way of doing so is to find the first three velocity
moments of the phase-space collision term and include them at the
appropriate points in the analysis presented in the previous section.
This is difficult to do, however, because the phase-space term can
seldom be known with much accuracy. It contains the distribution
function and funcfions describing the average rates and effects of
the various collision types; e.g., phonon emission and absorption,
impact ionization, impurity and defect scattering, and none of these
is always known exactly. The rate function for impact ionigzation is

52~54

.ery difficult to determine, and while functions are known for

55 these contain adjustable

a number of other collision processes,
parameters, whose values are in practice chosen to make theoretical
p1 2dictions agree with experimental measurements.

In effect, measured data are what determine numerical values
of the phase-space collision term. This suggests a more direct way
of arriving at the carrier, energy, and momentum collision terms:
that they be evaluated directly from this same data. This is the

procedure that will be followed here.

2.2.2 Forms of the Collision Terms. Before the collision terms

can be evaluated, the forms of their dependencies on the variables n,
u, and w of the transport model must be established. The collision

types to be accounted for (considered here in terms of their effects
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on electrons) can be divided into three categories according to the
types of carriers (electrons and/or holes) they involve:

1. Collisions undergone by electrons which change the
concentration, energy, or momentum of electrons.

2. Collisions undergone by holes which change the concen-
tration, energy, or momentum of electrons.

3. Electron-hole interactions which change the concentra-
tion, energy or momentum of electrons.
Electron-electron interactions are not considered because they have no
effect on electron concentration, average energy, or average momentum.
The effect of electfon-electron scattering is in any case to make the
distribution more nearly a displaced Maxwellian.5®

It will be assumed that all types of collisions which fit in

categories (1) or (2) above involve single carriers, and that their
per carrier rates are functions only of average carrier energy.
Blotekjaer and Lunde®® have shown that the latter assumption is reason-
able in the case of a displaced Maxwellian distribution. They derived
formulae for the energy and momentum relaxation times (defined below)
by taking moments of the phase-space collision term. Their results,
when written in terms of w, are independent of u to second order in u.

2.2.2.1 Same-Carrier Collisions. Categcery (1) above

includes all lattice collisions undergone by electrons. Of these, the
carrier concentration is affected by impact ionization, which contri-
butes & generation rate to the carrier transport equation:

an

[3t]c = an , (2.26)

1

where o is the average per electron ionization rate and is taken to be

2l

-
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a function of w. Its dimensions are inverse time,so it is different
from the conventional electron ionization rate employed in the static
model. The latter has dimensions of inverse length, as a carryover

from studies of gas discharges.57

In fact, the probability that an
individual carrier will cause ionization in unit time is dependent
upon its position in the energy band structure, a position which is,
in the nonstatic case, largely independent of its velocity. The
average of the probability cver a group of carriers is therefore,

in general, almost independent of their average velocity, so the per-
unit-time ionization rate a as defined in Eg. 2.26 is more fundamental
than the conventional, per-unit-distance rate.

Average momentum tends to be reduced by collision processes in
Category (1), since they tend to randomize the velocity distribution.
While the per-carrier rates of the processes are functions of energy,
the resulting rate of loss of velocity cennot be a function of energy
alone. This can be seen if two situations of equal energy and concen-
tration are considered, one in which u is large and one in which u is
zero. If the collision rates are functions only of energy, exactly the
came number and types of collisions will be taking place in both
situations. In the first, u is decreasing comparatively rapidly because
of the randomizing effect of collisions. In the second, u is not
changing at all, since it is already zero. The rate of change of
velocity due to collisions is very different from one situation to the
other.

The velocity and energy dependence of momentum loss in ccollisions

belonging to the first category will be accounted for by writing

-25-
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where Tv is an energy-dependent, effective momentum relaxation time.
While the rate of loss of average energy to these collisions is
a function of energy alone, it is convenient for the purposes of the
finite-difference approximations to the transport equations developed
in Chapter III to model the energy loss rate in terms of an energy
relaxation time. The minimum energy, instead of being zero, is the
thermalenergywb associated with the temperature of the lattice, so the

rate of energy loss will be written as

(w - w )
[i‘i] A ol , (2.28)
[o4

at
1

where T is an energy dependent, effective energy relaxation time. The
use of effective relaxation times in Egs. 2.27 and 2.28 is in accordance
with the forms of the energy and momentum transport equations given by
Blotekja.er."7

2.2.2.2 Opposite-Carrier Collisions. The second collision

category consists (from the point of view of electrons) of impact

ionization by holes. These contribute to the carrier generation rate,

an _
[;t‘] = Bp
(]

2

(2.29)

where 8 is the per-unit-time hole ionization rate and depends on hole
energy. Hole ionizations also affect electron average velocity and
energy. If it is assumed that the electrons created by hole ioniza-

tions have random velocities, their contribution to the total electron

momentum is zero:

b A heite faant

.




anu an du -
hﬁTJ “[st] + n{at] 0 (2.30)
¢ e, c,
Then, combining Egs. 2.29 and 2.30 results in
du = _ 8
[at]c U (2.31)

2
The increase in the number of electrons dilutes the momentum and
increases the rate at which momentum relaxes toward zero.

Similarly,

if the newly created electrons have average energy equal to Vs then

(2.32)

ow = _ B
[at]c = cn o)

2

2.2.2.3 Electron-Hole Interactions. The third collision

category includes Auger recombination and direct exchange of energy

Sze58

and momentum between electrons and ho.es. gives an estimate for

the Auger recombination lifetime which is large comparedto a millimeter-
wave period of oscillation under any circumstances which might normally
occur in an operating IMPATT. Blotekjaer and Lunde®® have estimated
the rates of energy and momentum transfer between electrons and holes
under the assumption of a displaced Maxwellian distribution. Under
ordinary conditions, their estimates are small in comparison to the

rates of energy and momentum loss which result from the numerical

values of the energy and momentum relaxation times as determined in
the remainder of this section. These processes are apparently of
minor importance in comparison to those in the first two collision
and are in the present study, although their

categories ignored

inclusion offers no difficulty in principle.
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2.2.3 The Complete Transport Equations. Adding the collision

terms whose forms have now been determined to the carrier, velocity,

and energy transport equations results in

on  _ nu

at = - a—x_ + an + Bp ’ (2-33)
du _ _ s g 2 3f . 1 1, 8p .
ot Ui tm " 3m a0 zm™ ]]' [rv"n]“ (2.34)
and
w w 2 3 1 2 1 _Bp
A i ™ axE‘“("’ 2 ™ )] - [1w+n](“’"o)
(2.35)

The complete energy and momentum conserving transport model consists of
seven equations, the electron and hole versions of Egs. 2.33 through

2.35 together with Poisson's equation for the electric field,

3E

= 2M-n+p), (2.36)

where Ni is the net density of ionized impurities.

2.2.4 Evaluations of Energy-Dependent Parameters. The

collision terms in Egs. 2,33 through 2.35 contain ionization rates and
relaxation times which are as yet unknown functions of carrier energy.
These functions must be given numerical values before the energy and
momentum conserving transport model can be applied to device simulation,
although the form of the model ig independent of the particular pro-
cedure used to obtain numerical values. The method of evaluation

which will be used here will be to determine the functions using

values of drift velocity and jionization rate which are known
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experimentally as functions of de electric field. A mapping of the
desired quantities onto the de field is obtained by writing simplified
versions of the transport equations applicable to the conditions under
which experimental measurements are made and substituting in the
known functions of field. A theoretically determined relationship
between energy and dc field is used to complete the mapping onto
energy. The resulting relationships Y =2tween ionization rates, relaxa-
tion times, and energy will be assumed to hold under all conditions.
This procedure for evaluating the functions of energy is not the
only possible rne, but it has several advantages. It makes use of
comparatively simpie equations involving experimentally measured values
of ionization rate and drift velocity, and guarantees that results of
the model will agree with experiment in the static limit. It predicts
forms for the energy and momentum relaxation times which are in accor-
dance with physical expectations, such as both relaxation times be-
coming decreasing functions of energy in the energy range where
impact ionization becomes significant. Finally, although the procedure
makes use of certain assumptions about the forms the transport equations
can take in the presence of spatially uniform dc electric fields, these
are all confirmed by simulatioa results presented in Chapter IV.

2.2.4.1 The static Transport Equations. It will be assumed

that the circumstances to which experimentally measured values of
electron drift velocity and ionization rate are appropriate include
those of spatially uniform, dc electric field and negligible hole
concentration. Under these conditions, all time derivatives and hole
ionization terms drop out of the transport equations. The spatial

derivatives of u and w will be neglected. (Simulation results for the
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case of spatially uniform, dc field presented in Chapter IV support
the use of this assumption.) The stated conditions of zero time
variation and zero spatial variation of E, u, and w will be referred

to as "uniform" conditions, under which the transport equations

become

u %% = an , (2.37)
qEt 2t
= v v 1 2y 9n
u o= - (w - 5> m ) - (2.38)
and
Ty 1 2y on

wo-woo= quErw -3 (w -3 m ) > (2.39)

The two terms on the right-hand side of Eq. 2.38 can be identi-

fied with field-driven drift and diffusion down the carrier concentration

gradient. Equating the first of these with the conventional drift

velocity Vq yields

T = — (2.40)

Since \f is known as a function of the uniform electric field, Eq. 2.40
relates Ty to the field under the assumed static conditions.
The right-hand side of Eq. 2.37 expresses the same quantity as

the conventional generation rate due to ionization by electrons.

Equating the two gives
' 1
an = 3 Ja* , (2.41)

where Jn is the electron current density, and the conventional field-
dependent ionization rate has been labeled with an asterisk. Since

u is the average electron velocity and is a function of the uniform
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field, Eq. 2.41 is equivalent to

a = ua* . (2.42)

This maps o onto E under uniform conditons. With the use of Egqs. 2.40

and 2.42, Eqs. 2.37 through 2.39 become

2vd 1
= - — - 2 *
u V4 3aE [w 3 mu )a (2.43)
and
2uTw 1 2
- = - — P, *
LA quET_ 3 (w 5 mu Ja* . (2.4k)

Given the strength of the electric field, v. and a¥* are known in

d
Eqs. 2.43 and 2.44. But the two equations are still in terms of three
unknowns, u, W, and Tw’ so there is not enough information to map

L and o onto the energy w. Equations 2.43 and 2.4L with any
mapping between energy and field will, however, guarantee that in the
limit of slow changes of the electric field in time and space, results
from the energy and momentum conserving model will agree with those

from experiment. The next step is to find a physically reasonable
mapping between the field and the corresponding mean energy for momentum
distributions in equlibrium with the field. Several calculations of
this mapping have been performed in the course of development of
57353560

theories for the field dependence of the ionization rates.

2.2.4.2 The yniform Fnergy-Field Relationship. The esti-

mate for the distribution function which has been used in the present

f57

work was developed by Wolf and has

2 a2
PR /2F + me® /2F Ei(me2/2F) , 0 <c < c,

(2.45)

N(CQE) A B e

= 0 c >
[} _Cc ,
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where A and B are normalizing constants, ¢ is the carrier speed,
Ce is the speed at the energy threshold for impact ionization, and
Fi is the exponential integral function. F is a function of the field

defined by

po= (92 (2.46)

where ) is the mean free path for optical phonon emission and ¥w

is the optical phonon energy. X and the ionization threshold energy

are chosen so that the ionization rates predicted by Wolff's theory

are in reasonable agreement with measured values. Wolff assumed that
ionization takes place’relatively quickly once a carrier climbs above

the energy threshold, so that negligibly few carriers are above threshold
at any one time.

Wolff's distribution cannot apply at low values of field because
it makes no allowance for equiljbration between the carrier and lattice
temperatures as the field approaches zero. It will be assumed that the
distribution dées apply when the field is at least 300 kV/cm, a value
at which the static ionization rate has begun to be appreciable. In
this range, the desired static w-E relation is just the second moment

of Wolff's distribution:
¢

c .
w(E) = J %-mczl\l(c,E)cz de , (2.47)
o

v P e .

where the differential volume is a spherical shell in velocity space.
The integration in Eq. 2.47 must be performed numerically because of
the presence of the Ei function in the integrand.

For uniform fields of less than 300 kV/em, it will be assumed

e Te e, -

that T, is given by a polynomial in the field. Knowledge of T, and
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BTw/aE at the boundaries of the interval is sufficient to determine
the coefficients of a third-order polynomial. T, and arw/aE at

300 kV/cm can be inferred from Eqs. 2.43, 2.44, and 2.47. The re-
maining two boundary conditions are provided by examination of w when
the field is close to zero. Since w is a minimum at zero field, it
must be a function of even powers of field in the neighborhood of
zero. It will be assumed that the carrier distribution is not signi-

ficantly heated at low fields so that
mu? (2.18)

for fields close to zero. Since the impact ionization rate is negli-

gible at low fields, Eq. 2.h4 gives
W = quEtr + w_ (2.49)
under this condition. Combining Egs. 2.48 and 2.49 results in

T, = o (2.50)
E=0

where p is the low-field mobility. The fact that w is even in E,

together with Eq. 2.u48, implies that

3t
W

oE F=0

= 0 . (2.51)

Though it is not important for the energy-field relation, it is
interesting to note that a similar anelysis involving Eq. 2.43 leads
to

. (2.52)

T, =
E=0

o

This can also be seen directly from Eq. 2.40.
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With TW(E) determined for O < E < 300 kV/cm, the w-E relationship
on this same range can be determined from Eqs.2.43 and 2.4L. Tt would
be more direct to assume that w itself is a polynomial in E on this
range, but this could result in w not monotonically increasing with E,
which is nonphysical.

2.2.4.3 The Functions of Energy. Given the full range

E-w relationship, the relaxation times and ionization rate can be

found as functions of w. The parameters used in this process are

shown in the Appendix for both electrons and holes. They include

phonon energy and crestion mean free path, ionization threshold energy,
low-field mobility, effective mass, and parameters for the phenomenclog-
ical relationships between drift velocity, conventional ionization rate,
and static field. The lattice temperature is taken to be 500°K. The
effective mass values used are those which apply at the energy minima,
though they could be changed without affecting the form of the
transport model. Figure 2.1 shows the static E-w relationships for
electrons and holes, while Figs. 2.2 and 2.3 give the relaxation

times and ionization rates as functions of energy.

2.3 Relationship to Other Models

In Chapter I, it was mentioned that other nonstatic IMPATT
models have been attempted. These will now be assessed. The condi-

tions under which the energy and momentum conserving model limits to

BRI -, X

the conventional drift-diffusion model are also described.

2.3.1 The Energy Conserving Model. Kafka and Hess"! developed

an IMPATT model which includes energy conservation and energy-dependent

5

ionization rates, together with conventional field-dependent veloci-

ties. Their energy transport equation is similar to Eq. 2.35, although

N~
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it includes a nonzero heat flow vector, but it is written in terms

of the total energy of electrons and holes together, so that the
model does not treat the electron and hole energies independently.
Kafka and Hess assert that their model becomes equivalent to the
conventional one when the flux divergence, pressure, and heat flow
terms are dropped from the energy transport equation. Since they

saw significant differences in their simulation results depending
upon vwhether these terms were dropped, they concluded that the terms
represent effects not allowed for by the conventional model which are
important factors in the operation of millimeter-wave IMPATTs.

Unfortunately, éhe reduced form of the Kafka and Hess transport
model is inconsistent. The pressure term in the energy transport
equation does not drop out unless the carrier concentration gradient
is zero, but a nonzero gradient must in fact exist when impact ioniza~
tion is present. Instead of disappearing, the pressure term in the
energy transport equation of the reduced model should take the form
which appears in Eq. 2.39.

It is not certain that this oversight affected the results
obtained by Kafka and Hess, but it may have done so. Under static*
conditions, all the terms in the energy transport equation become
small, except those which appear in Eq. 2.39. These remaining terms ‘
determine & relationship between energy and field, hence, also

betweeen energy-dependent ionization rates ard field. In the reduced

#The term "static" is used here in the sense as defined in Chapter I,
where it refers to conditions of sufficiently slow space and time
variation of the electric field to allow the carrier momentum dis~
tribution to reach equilibrium with the field.

. s
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version of the model, one of the terms in Eq. 2.39 is missing, and a
different relationship between ionization rate and field results.

What Kafka and Hess may in effect have done was to perform two
essentially static simulations with different sets of ionization rates.
This possibility is consistent with the facts that they were able to
make their results from the two mcdels agree by adjusting the ioniza-
tion rates, and that their plot of the carrier temperature profile
shows relatively constant temperature and field across the ionization
region of their device, indicating that the carrier momentum distri-
bution did reach equilibrium with the field in precisely the region
where impact ionization was taking place.

r 2.3.2 Energy and Momentum Balance Models. Constant and co-

39240 pave developed two Read-type IMPATT models based on energy

{ workers
and momentum balance relationships. Their first model applied these
relationships to the IMPATT drift region while treating the ionization
region in the conventional manner.39 The second applied the energy
balance relationship, with energy-dependent ionization rates, to the
ionization region, while assuming saturated drift throughout the

40 (This was done partly in an effort to confirm the effects

device.
of avalanche delay due to energy conservation which had been reported

previously in connection with certain results from the present

61,62
work. * )

Neither of the energy and momentum balance models treats
the entire device in a unified way.
The balance relationships used by Constant and Salmer are

similar to those proposed by Shur®?® and are equivalent to

du _ gE _u_
Ty o - T (2.53)
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and

a v
E% = quE - —— (2.54)
w

where T is assumed to be constant. These relationships are just
approximate versions of Egs. 2.34 and 2.35. They omit the effects of
momentum and energy flux divergence, of the pressure terms, and of

the spatial dependence of u, w, and E. The balance models make allow-
ances for nonequilibrium between the carrier velocity distribution and
the electric field but tend to overestimaste its effects, since they

assume that nonequilibrium extends uniformly over the entire drift or

ionization width, ignoring the fact that carriers will tend to approach

equilibrium with the field as they traverse a region of uniform field.
It should also be noted that diffusion effects, which are included in
even the conventional static model, are not allowed for in Egs. 2.53

and 2.54.

2.3.3 The Drift-Diffusion Limit. If the difference between

the energy and momentum conserving model and the conventional drift-
diffusion model lies in whether nonequilibrium conditions are allowed
for, then the two models should be equivalent once equilibrium is
reached. This is indeed the case. When the field changes slowly in
time and space, the velocity transport equation reduces to Eq. 2.38.

Substituting Eq. 2.38 for u in Eq. 2.33 gives

ngrt_E T T
an _ _.a._[ v)+_a_[__v“b._c a_n]H.,

at 9x m 9x m %
= 9 _|pan
= - {npE) + rw [D ax] +C (2.55)
=ho-
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where

o= — (2.56)

D = —— , (2.57)

and G is the carrier generation rate. Equation 2.55 is just the
standard drift-diffusion equation for electrons with mobility y and
diffusion coefficient D. D and y satisfy the Einstein relation in
terms of Tc. D can be calculated as a function of field from Eq.

2.57 using the static relationships between field, energy, and
relaxation time found previously. Results are shown in Fig. 2.4. This
static D(E) relation is a consequence of the assumed static w(E); one
mapping implies the other. It would be possible to assume D(E) and
derive w(E), but comparatively little iskrown about the physical situa-
tion in Si from which to perform ab initio construction of D(E),
especially at high field strengths. An apparently reasonable choice of
D(E) can easily lead to an unreasonable w(E), such as one where w is
not monotonically increasing with E or where w reaches values well in
excess of the ionization threshold. The latter would, in fact, result
from the D(E) assumed in at least one IMPATT simulation study based on

the drift-diffusion model.®*

2.4 Summary and Conclusions

An energy and momentum conserving transport model for carriers
in 8i has been developed. The model consists of transport equations
which are velocity moments of the phase-space transport equation. The
collision terms are evaluated by requiring that under conditions of

slow time and space variation of electric field the results of the

41~
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model must be consistent with experimentally measured carrier
velocities and ionization rates.

The model is free of the chief limitation of the conventional
drift-diffusion model in that it does not assume equilibrium between
the carrier velocity distribution and local electric field. It is
also more general and self-consistent than all previous attempts to

produce nonstatic transport models applicable to IMPATTs.
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CHAPTER III.

NUMERICAL METHODS FOR IMPATT DIODE SIMULATION

This chapter describes the numerical implementation of the
energy and momentum conserving transport model which has been used to
simulate the operation of Si IMPATT diodes. The organization of the
chapter is as follows. In Section 3.1 a set of normalizations for
finite-difference approximations to the transport equations is
developed. Section 3.2 considers the stability and accuracy of various
finite-difference forms and describes the form which has been chosen
for the simulation program. Section 3.3 explains how the program
applies spatial and temporal boundary conditions to the finite-
difference equations, and Section 3.4 describes the findings and

conclusions of this chapter. !

3.1 Normslizations

There are a number of constants, such as time and space step
length, which appear repeatedly in finite-difference approximations
to the transport equations developed in Chapter II. If the finite-
difference equations are normalized with regard to these constants,
the equations are simplified,and efficiency is greatly increased.
This section describes the set of normalizations which has been

used in the present study.

The transport equations are repeated here for convenience:

-g%=-*g-;ﬂ+om+6p s (3.1)
A ]

1 NSy
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u _ _,8u_ gE_ 2 39 1 2 i ,2
ol uax+m - 3 ax E[w—zmu ):]- u[Tv+nB (3.2)
and
RGOS I Y S R P D I
at ax ¢ 3n  9x 2 ~J T o’ {1, n
(3.3)
Their general finite-difference approximations are given by
dtn 6x
S T (nu) + an + gp , (3.4)
§,u ) ' $
X . X QE _ 2 X L i,
L A Y nlw - 5 m i] - u[Tv + o 3]
(3.5)
and
S, W S w 8
. X 2 x 1 o2 1,2
Mo T T UE TWE-§ g mu{v-3m i] - (v =) [rw *h B] ’
(3.6)

where Gt represents any finite-difference in time, cx is any finite-
difference operator in space, and A is an incremental operator.

(Only constant At and Ax will be considered.) When the same notation
is used, the finite-difference approximation to Poisson's equation is

x - s - -
X . (Nd N, +D n) . (3.7)

In Eq. 3.4, use of & normalized velocity

= o At
u o= ouiy (3.8) |
and normalized generation rates ;
;
¢
L]
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a.B = oaAb,BAt (3.9)
gives

§n = 6 (nu) +an+gp , (3.10)

where an underscore denotes a normalized quantity. As the normalized
form of Eq 3.4, Fq. 3.10 contains neither Ax nor At. If Eq. 3.5 is

multiplieé@ by At?/Ax, the result is

This suggests that energy, relaxation time, and electric field be

normalized as

2
¥ o= vty (3.12)
b
LA s (3.13)
and
. aEat?
E A . (3.14)

The normalizations given by Egs. 3.8, 3.9, and 3.12 through 3.1l elim-
inate Ax and At from Egs. 3.5 and 3.6, The electric field is not
normelized with respect to effective mass because the field appears in
both the electron and the hole transport equations, where two differ-
ent values of effective mass apply.

Using the normalized field in Eq. 3.7 gives

2 2
8 =-‘L§t—(md-na+p-n) , (3.15)

("
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so that it is convenient to define a normalization for carrier and

doping concentration by

2 2
n = 447, (3.16)

Normalization of the carrier concentrations has no effect on Egs. 3.l

through 3.6.

Along with Eq. 3.10, the normalized versions of Egs. 3.4 through

3.7 are

uE 5 1
G‘t— = _EGXK'.-m_-—:’)—‘SXEu(E_EEZ)]-(w_w) T+_H_'§]
(3.18)
and
GX_E = (Ed—_l‘la+2-g) . (3.19)

Table 3.1 summarizes the normalizations. Henceforth, the underscore
notation for normalized quantities will be omitted, and when it is not
apparent from context whether the quantities referred to are normal-

ized or not, this will be stated specifically.

3.2 Finite-Difference Operators

There are many possible forms for Egqs. 3.10, 3.17, and 3.18,
corresponding to different forms of the operators 6x and 6t’ and to
different choices of time levels at which the various spatial difference
terms are evaluated. An optimum finite-difference form will be one

which is both accurate and efficient, but the goals of maximum
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Table 3.1
Normalizations for Finite-Difference Forms

of the Transport Equations

Quantity Symbol Normalized Quantity
Average velocity u . u= u{at/ax)
Aversage energy W v = (w/m)(At/Ax)2
Particle concentration n n = n{(a?at?)/e]
Flectric field | E E = (qEAt?)/(ax)
Relaxation time T 1= t/at
Ionization rate ’ a,B a,8 = adt,pat
\
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o
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accuracy and maximum efficiency are incompatible. This section
shows how a compromise between the two has been reached.

It will be assumed that the ratio Ax/At will have some minimum
value which will be given by the form of the Courant-Friedrichs-Lewy
condition which applies to whatever particular numerical form is
chosen for the transport equations. If this ratio is always given
its minimum value, the normalized drift and pressure terms in Egs.
3.10, 3.17 and 3.18 become independent of Ax and At, while the nor-
malized source (carrier generation and field) and relaxation terms
become proportional to At.

In order té resolve events which take long enough in relation
to the RF period to be of importance to device operation, At itself
must be sufficiently small. The time step will become smaller as
frequency increases, and vice versa. In the limit of very small At,
the drift and pressure terms will dominate the normalized finite-
difference equations, and in the limit of large At, the field, gener-
ation, and relaxation terms will dominate. This is reflective of the
shift from static to nonstatic transport as device speed increases and
the characteristic time scale becomes shorter. In a comparatively slow
device, static equilibrium between the field and relaxation terms ade-
quately describes the transport of carriers. In a faster device,
the nonstatic effects of drift and pressure on the momentum and
energy become important.

It is convenient to begin a discussion of finite-difference
approximations to Egs. 3.1 through 3.3 at the limit of very short
time scale and small At, when the normalized source and relaxation

terms can be neglected. If it is to be useful in general, any
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approximation must be useful in this limit. Therefore, the first
part of this section is concerned with the sourceless and collision-
less version of the finite-difference model, and the second part with
the further considerations which arise when the source and collision
terms are restored to the finite-difference eguations.

3.2.1 Transport in the Limit of Short Time Step. The source-

less and collisionless forms of Eqs. 3.10, 3.17, and 3.18 are

§,n = —Gx(nu) s (3.20)
2 1
§ou = -usu- = §_ |nfw - 5 uzi] (3.21)
and
- 2 1 2
B,w = - ubw - Gx[éu(w -5u i] . (3.22)

Various forms of the difference operators will now be considered.

3.2.1.1 Forward-Time, Upwind Drift Differences. Using

forward-time differences in Egs. 3.20 through 3.22 requires less
storage than centered differences, and it is simplest to evaluate all
the spatial difference terms at present time. Upwind differencing
tends to preserve the "transportive"* property of drift, while
centered differencing of the pressure term in Eq. 3.21 will reflect
the fact that acceleration due to pressure differences acts in both
the upstream and downstream directions. The pressure terms in Eq.
3.22 can be interpreted as keeping track of the work done by carriers
in drifting through the pressure field, so upwind differencing is

9

appropriate.“ A reasonable form for Eqs. 3.20 through 3.22 would

#*The term "transportive” is applied here as it is defined in
Reference 49, p. 67.
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therefore appear to be

teat _ bttt ottt
n, = nj - nj(uj uj—1) uj(nJ nj-1) , (3.23)
teat _ ot ottt oy 1 [t Lty t
e e S U [["j 2 () ey, - my )
J
t: t t t, t t
+ nj[wJ+1 wj_1 j(uj+1 -~ uj 1)] (3.24)
and
tHat _ - 2t L1ty t t
vy vy uj(wj Mj_l) 3nt [wj 5 (uj) ][(nj nj 1)uJ
J
t t t t L, t t t, t t
+ (uy - uj_l)nj] + u:jnj[wj = vy~ uyluy - uj—1)] > (3.25)

where subscripts denote position in the space mesh and superscripts
position in time.

3.2.1.2 Stability Analysis. The stability of Egs.

3.23 through 3.25 can be examined by extending the usual Fourier
stability analysis to three variables in the way outlined by
Potter.3? The solution to Egs. 3.23 through 3.25 at a point in time
is a vector function on the points of the space mesh. This function

has a Fourier decomposition which can be denoted by

_ntT
J
- M ijg
b = F o= z e ® . (3.26)
J J m=-M M
Wt
J
)
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where

By = /M, (3.27)

i is the square root of -1, and M is the number of points in the mesh.

The numerical error £ present in the solution has a similar decom-
position. When the error is small, it changes linearly across a
time step, and the change in each of its Fourier components can be

expressed in terms of an amplification matrix [G]:

Ei*At = ([1] + [Gm])Ez . (3.28)

The identity matrix in Eq. 3.28 accounts for the effect of the

forward time operator used in each of Egs. 3.23 through 3.25. The

particular form of [Gm] corrésponding to these equations can be

_t
found by substituting the Fourier seriesforEj into Egs. 3.23 through

3.25, resulting in 2M + 1 component equations similar to Eq. 3.28.
Linear change in the error means that the variable coefficients of
the spatial differences can be treated as constants across each time

step, so [Gm] is given by

fc ] =
B -ig -i8
—u(t-e M -nl-e ™ 0 W
- %% W - % u?) sin Bm -u(l - e m) + %i& sin Bm - %1 sin Bm .
-ig ~-ig -ig
2u 1 Poy 2,3, my _5 m
- 3n(w -3u W1l - e ) - 3(w -5u 1 ~ e ) -3 u(l - e )
L

(3.29)
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Stability of Egs. 3.23 through 3.25 requires that no component

of the error be able to grow in magnitude across & time step. Equa-
tion 3.28 implies that this will be true if, for all - 7 < Bm < T

all the eigenvalues ) of [Gm] satisfy
1 +2)2 < 1 . (3.30)

It is tedious to solve the characteristic equation of [Gm]
directly, but there is a simpler way of getting the same information.
The upper-left entry in [Gm], which results from the upwind drift
operator, repeats in the other two entries on the diagonal, so

[Gm] is the sum of two simpler matrices:

-iB
[c,] = -u(i-e ™I1]+(c!] , (3.31)
where
[GA] = .
_ -18 _
0 - n(l-e ™) 0
- %%(w—auz) sin g =5 sin g - gi-sin B, .
~iB -iB ~-iB
1 2 * m g 3 2 m c2u m
L- 3n(w-5u H1l-e ) - 3(w~§u Y(1-e ) - =(1-e )
(3.32)

Any eigenvector of [Gé] is an eigenvector of [Gm], and when \' is an
eigenvalue of [G&], the corresponding eigenvalue of [Gm] is given by

-ig

A= A —u(l - e . (3.33)
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The characteristic equation of [Gé] is

-if . -ig
AIar? o+ %E (1 -e ™o sin Bm) - gl(w - %'uz)(l -e ™ sin Bm]

-iB

24a, 0 1 2 - my . -
-5 (w 5 (1 - e } sin B, 0 , (3.34)
which results in A; = 0 and
-if -iB
M, = ‘_%(1-3 m-isian)t%[(l-e " - ising)?
1 “18n..1
+ 10i{w - 3 u?) sin Bm(l -e )] . (3.35)

Al correspondiﬁg to A; satisfies Eq. 3.30 for any value of Bm.
A; and A; are somewhat complicated functions of Bm, but they can be
simplified by noting that w is nearly always large in comparison to
2

u°. The magnitudes of A; and A; are largest when Bm =n/2,

when the two eigenvalues are given approximately by

1
M, E- 3t [-lg wii-1)12 . (3.36)

When the plus sign is used, Eq. 3.30 becomes approximately
|1 - 1.33u + 0.48/A + 1.2i/]|2 < 1 . (3.37)

Equation 3.37 is seldom if ever satisfied under the conditions
which occur in an operating IMPATT. This means that the numerical
method given by Egs. 3.23 through 3.25 is unstable in the limit of
small At. It will be shown, however, that when At is sufficiently
large, the method can be stabilized by proper treatment of the

relaxation terms, so that it has been possible to use the method as

{
‘ —Sh-
;

S n -
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shown in Egs. 3.23 through 3.25 in much of the diode simulation work
performed in the course of this study.

3.2.1.3 Forward-Time, Centered Space Differences. In

order to develop a stable method, it is useful to examine another

form of Egs. 3.20 through 3.22. The reason for the instability of
Eqs. 3.23 through 3.25 is that Vv appears in the real part of A,

where it adds in Eq. 3.37 to the number one which appears from the
forward-time operator. The presence of the quantity 1 - e-le in

[Gé] is wha? causes this. If all the upwind differences which contri-
bute 1 - e-lem are changed to centered differences, they will instead

contribute i sin B _, and [G&] will become

T =
LG%]
T . . ]
o} - in sin Bm 0
2i L2y . 2iu . 2i .
- 3n(w - Zu ) sin B 3 sin B - 5 sin B
2iu 2y o 2, 3.2y o 2iu
L— 3 ( Su ) sin B, - 3 (w - Su ) sin B, - =5 sin B
(3.38)
The eigenvalues of [Gé] are now
A= 0
1
and
. 10 1 24493
[ —(w - = .
Az,a * i gin Bm[ 9(w 5 u e . (3.39)

But now when By = n/2, Eq. 3.30 becomes
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|1ti[-l—(9)-w-%u2)]§|2 <1 . (3.40)

Equation 3.40 can never be satisfied, so the modified version of Egs.

3.23 through 3.25 is no more stable than the original.
3.2.1.4 The Lax Method. There is a stable form of
Eqs. 3.20 through 3.22 which is explicit and involves Just two time
levels. It is based on a numerical form developed by Lax®5 for the
usual equations of hydrodynamics, which are similar to Egqs. 3.20
through 3.22. This form uses centered differencing for all differ-
ences in space but differs from the one just described in that it

uses a modified forward-time operator:

§,x, = xt+At - L(xt + xt )

G B A TR R (3.4)

where x is any of the normalized transport variables. The new time

operator changes Eq. 3.30 to

]cos Bm + )\la <1 , (3.42)
and centered drift changes Eq. 3.33 to
A = -dusinB +2' . (3.43)

For the Lax method, [Gé] and its eigenvalues remain as in Egs. 3.38

through 3.39, so Eq. 3.42 requires

lof + (2w -Luyd 1, (3.44)
9 2 -
In terms of unnormalized quantities, Eq. 3.4U4 requires
&2 qul e [1—g<7‘,’;-%u2)]3 . (3.45)

-56-

e wfpmen s



g

VRSN [ s D R R

|
|

Equation 3.45 is a statement of the Courant-Friedrichs-Lewy
condition as it applies to Eqs. 3.20 through 3.22. The right-hand
side is the sum of the advection speed [u| and the speed at which a

pressure disturbance can propagate.5°

The latter is analogous to the
speed of sound in a fluid. This speed is often several times larger
than |u| when carriers ina semiconductor are considered, so Eq. 3.45

restricts At to be several times smaller in relation to Ax than does

the least restrictive condition which may apply to simulations using

the drift-diffusion model, i.e.,3®
Ax
it 2 Vg oo (3.L6)

where v, is the static drift velocity. (The form of Eq. 3.45 also
illustrates the usefulness of having the same Ax/At in all simula-
tions, since the stability of numerical methods tends to depend on
this ratio.)

The stability of the Lax method is achieved at the price of a
comparatively large amount of numerical diffusion. The method intro-

duces & spurious diffusion term into each transport equation, with a

diffusion coefficient given by"9

2 2
D = %{1 - u? 2—;‘(,] . (3.47)

where u is the unnormalized drift velocity. Since Eq. 3.45 usually
requires that Ax/At be at least 5 x 107 cm/s, Dn can easily exceed
the effective diffusion coefficients derived in Chapter II.

3.2.1.5 Three-Level Schemes. Numerical diffusion can

be substantially eliminated by the use of a three-time-level

scheme. A number of such schemes have been developed for the
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hydrodynamic equations and are generally considered to be variations
on a scheme originally presented by Lax and Wendroff.%® Each of
these schemes is subject to the same stability limitation, as given
by Eq. 3.45, as the Lax method."*® The original Lax-Wendroff scheme
is two level, but is somewhat complicated. Richtmyer57 proposed

an equivalent but simpler two-step, three-level scheme. Richtmyer's
method gives a useable solution only at alternate points on the space
mesh and only on alternate time steps, so a variation developed by
Burstein®® has been chosen for use in the simulation program. In
this method, the transport equations are considered as a single-

vector partial-differential equation:
of | _ 90
Rl (3.38)

Equations 3.20 through 3.22 can be considered to be in the form of

Eq. 3.48 if the variable coefficients of the space derivatives in

Egs. 3.21 and 3.22 are treated as constants across each time step.
The first step in Burstein's method uses the Lax method to

find a trial solution at the half time and half space step:

Fhrat/z _ Lgt gty AL Gt 3t

J+% 2 J+1 J 2AX J+1 = J . (3-’49)

The second step uses these centered values to evaluate 9 and advance

the solution across a full time step:

FtHAt | St At st+At/2 _ gteAt/2
£ £y = x4 by ) (3.50)

Burstein's method is stable provided Eq. 3.45 is satisfied, and it

introduces little spurious diffusion. Its usefulness is obtained
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at the cost of sacrificing the transportive property of upwind

drift and of increased computational effort in comparison to a
one-step scheme. Space centered differencing does give some ad-
vantage in terms of program simplicity because it requires no special
treatment of velocity reversals.

3.2.1.6 Other Schemes. It should be noted that methods

other than the Lax and Lax-Wendroff types may be applicable to

Egs. 3.20 through 3.22. Richtmyer69 describes a two time level sbheme
for the hydrodynamic equations which adrances u in time before it

does n and w, but he gives an apparently erroneous stability analysis.
It is unclear whefher this scheme would adapt successfully to the
transport equations used in this work. No implicit scheme has
achieved any significant degree of acceptance among fluids simu-
lators,“g though a workable one has been developed by Polezhaev.’?
This scheme is unfortunately only applicable to "supersonic" flow,
in which u is greater than the square-root quantity in Eq. 3.h45.
Several other implicit schemes have been tried on the computer in
the course of the present work. None was found to be reasonably
accurate and to have greater stability than the Burstein method.

3.2.2 Source and Relaxation Terms.

3.2.2.1 Carrier Generation and Electric Field Terms. The

impact ionization term represents exponential growth of the carrier
concentration, with growth rate a or B (unnormalized). In the
simulation of millimeter-wave devices, the product of growth rate
and time step is much less than one, so a first-order approximation
of the exponential growth is sufficiently accurate:

¢ = an® + Bpt . (3.51)
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In the simulation of microwave devices, the time step can become
large enough that a second-order treatment of generation is
required,38 but this will ordinarily occur only in situations where
the static transport model is adequate for describing device
behavior.

The terms containing the electric field in the energy and
momentum transport equations are evaluated at present time. The
coupling of the field terms to space-charge density through Poisson's
equation introduces restrictions concerning the dielectric relaxa-
tion time and the Debye length. Preventing numerical overshoot of
the charge concentration in low-field regions requires that At be
shorter than the dielectric relaxation time,®® but this is usually
less restrictive than Eq. 3.45 when Ax is chosen for reasonable
spatial resolution in a millimeter-wave device. The device boun-
daries are not described with precision when Ax is greater than the
Debye length, which can be on the order of 10=7 om in contact
regions, but, as shown by results given in Chapter IV, little is
gained in the description of overall device behavior by making Ax
so small.

3.2.2.2 Relaxation Terms. The relaxation terms represent

exponential decay of u and w. Both the energy and momentum equations

have the form

R (3.52)

where S is a "source" term representing the influences of the field

and space derivative terms. The exact solution of Eq. 3.52 is

£(t + At) = [£(t) - St) /T 4 g | (3.53)
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The simplest finite-difference approximation to Eq. 3.52 is first

order in time, having the decay term evraluated at time t, giving
ft

1. 1
ghrat f‘:' + 86t - — 8t . (3.54)

1

Bosch and Thim>! used an energy and momentum conserving model to
simulate the operation of transferred electron devices. They used

a second-order, present-time form of the decay term, which gives

f123+At _ (f: - so)[1 - Aty 12_(-@-)2] + St . (3.55)
T T

Another possibility is to perform first-order evaluation of the decay
term at advanced time, which still gives an explicit solution. The

first-order, advanced-time approximation to Eq. 3.52 is

sirat f‘: + SAt

teAL Lt 3 -
f'3 = f3+SAt— . At m . (3.56)

Setting S to zero in Egs. 3.53 through 3.56 gives the behavior
in each of any numerical error which may be present at the beginning
of the time interval. Error is plotted in Fig. 3.1 as a function of
At/T for each of the forms in Egs. 3.53 through 3.56. The figure
shows that stability of f1 and f2 requires At be less than twice the
relaxation time because the magnitude of error in these two approxi-
mations grows if this limit is exceeded. This would be a severe
restriction on At in actual simulations, since the momentum relaxa-
tion time in Si can be less than a hundredth of a picosecond. No
such time-step restriction applies to fs’ so0 it has been chosen for
use in the diode simulation program. f3 has the additional advantage
of being in agreement with f(t) as given by Eg. 3.53 in the limit of

large At. This is not true of f1 or fz.
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FIG. 3.1 NUMERICAL ERROR VS. TIME STEP LENGTH FOR VARIOUS
FORMS OF THE DECAY EQUATION. [f(At): EXACT;
f : FIRST ORDER, PRESENT TIME; f : SECOND ORDER,
2

1

PRESENT TIME; £ : ADVANCED TIME)
3
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Advanced-time relaxation can also improve the stability
which is associated with a numerical form of the spatial derivative
terms. This can be seen by examining its effect on the amplification
matrix. With the inclusion of source terms and advanced-time relaxa-
tion in the transport equations, Eq. 3.28 becomes

T o (RNIT) ¢+ (6 DES (3.57)

m

where R is a relaxation matrix given by

1 0 0
(R = [0 [1+(1/c)+ 8(p/n)]™ 0 .
o 0 [1+ (1/c) + 8(p/m)]™

(3.58)

Since the diagonal elements of [R] are less than or equal to one, the
magnitudes of the eigenvalues of the right-~hand side of Eq. 3.58 are
smaller than the magnitudes of the eigenvalues of [I] + [Gm] alone. If
the latter are not significantly greater than one, use of advanced-
time relaxation can stabilize a method which is otherwise unstable.
Equation 3.37 for the eigenvalues associated with the numerical
method given by Egs. 3.23 through 3.25 indicates that keeping the
eigenvalue magnitudes close to one requires that normalized u and w
be sufficiently small. This in turn requires that Ax/At be small, so
that the stability requirement for the method in Eqs. 3.23 through
3.25 with advanced-time relaxation amounts to a Courant-Friedrichs-
Lewy condition. In practice, it has been found that the method is
gtable if Ax/At is greater than approximately 5 x 107 em/s and At is

greater than approximately 0.02 ps.
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3.2.2.3 Source and Relaxation Terms in Burstein's Method.

If requirements for spatial resolution dictate that Ax be
extremely small, the CFL condition can require that At be so small that
the normalized diagonal terms in the matrix {R} in Eq. 3.58 approach
one. If this happens, advanced-time relaxation will no longer provide
numerical stabilization, and a Lax-Wendroff-type scheme for the spa~
tial derivative terms in the transport equations must be used. Such
schemes advance across a time step in two stages, so the question
arises as to whether the source and relaxation terms should appear in
both stages or whether the effects of these terms over a time step
should be lumped into the second stage only. The latter approach has
been followed in the present work. Conceptually, this treats the
influences of the pressure and drift terms, and those of the source and
relaxation terms, as acting in parallel across a time step, just as
in a one-~step scheme. The approach has been chosen for two
reasons. First, the time-centered intermediate result obtained in the
first step of a Lax-Wendroff scheme is not a "true" solution, but
only an estimate upon which to base the second step. Evaluation of
the source and relaxation terms should be done in terms of the gen-
uine solution, which is not available as a time-centered quantity.
Second, incorporation of source and relaxation terms only in the
second step simplifies the method somewhat.

Burstein's method with source and relaxation terms in the
second step can be represented as follows. The first step remains

exactly as in Eq. 3.49, while the second step becomes

+38) , (3.59)

St+At =t tHAt/2 | 3tebt/2
£ [R](fJ SR
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where T and ¢ are defined by Eq. 3.48, [R] is the relaxation metrix
given by Eq. 3.58, and S is a vector representing the contribution
of carrier generation and the electric field.

It has been found that the presence of source terms in Burstein's
method can cause overshoot in the solution to ocecur near inflow
boundaries. The overshoot can be eliminated by using an appropriate
form of the two~-step method. The sourceless carrier transport equa-
tion can be written in two numerical forms arising out of the compact
and expanded forms of the spatial derivative term:

on _ anu

T T ax (3.602)

and

an Ju an
prs -naC - U . (3.60b)

In the continuum, there is no difference between Egqs. 3.60a and 3.60b.
If their forms are carried through to the numerical method, they give

rise to the following first steps in the method,

t+At/2 1,.t t 1, t t t t

Pyl = 2(nJ + nJ+1) - 2(njﬂuj+1 - njuj) (3.61a)
and
t+At/2 _ 1, t  t 1, t % t t
Pyed = 2(“J + n,j+1) - 1?(“3 + “3+1)(“3+1 - uj)

- )]i-(u;' + u§+1)(n§+1 - ng) , (3.61b)

and the following second steps,

LAt teAL/2 teAt/2 | teAt/2 tAt/2 (3.62a)

J J I+3 3+d 3-3 3-3 :
and
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(3.62b)

In Eq. 3.21b the coefficients n and u of the space derivatives are
centered at the nalf space step.

Equations 3.6la and 3.61b are numerically equivalent, but there
is a difference between Eqs. 3.62a and 3.62b which gives rise to
different overshoot properties. At the inflow boundary in an IMPATT,
carrier concentration and velocity can both change rapidly in space
because carriers enter the diode from a low-field region wi.ere they
are minority carriers. Once inside, they accelerate and undergo
impact ionization, and the resulting changes in n and u can be so
rapid as to cause the right-hand side of Eq. 3.62a to be negative near
the boundary, so that the carrier concentration overshoots past zero.
Equation 3.62b contains cross products between n and u at different

points in space, so the tendency to overshoot is much reduced.

3.3 Initial and Boundary Conditions

The transport equations determine their solution to within
three sets of conditions: the initial conditions on the simulation
variables throughout the space mesh, the boundary conditions on the
simulation variasbles (usually defined at the edges of the mesh), and
the relationship between terminal current and voltage which is deter-
mined by the interaction betweer the diode and its external circuit.
This section discusses the forms and methods of application of these

conditions in the simulation program.
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3.3.1 1Initial Conditions. The IMPATT simulation program is

"stand alone" in the sense that it need not start from initial condi-
tions provided by a dc solution to the transport equations. The
program can either set up initial conditions following guidelines
provided by the user, or it can start from the solution obtained at
the last time step of a previous simulation run.

The use of an arbitrary starting condition which might never
arise in the course of actual device operation might appear to be
in contradiction to the transport equations, but any starting condi-
tion which does not overspecify the initial solution is mathematically
possible. Experiénce with the simulation program has never turned up
a situation in which an arbitrary set of starting conditions did not
evolve rapidly toward a physically realistic solution as the simula-
tion progressed. Care must only be taken to set the initial conditions
so that the starting transient does not cause unrealistically large
values of u or w to occur momentarily, since this can violate the
condition of Eq. 3.45,

3.3.2 Spatial Boundary Conditions. Even though the transport

equations are first order, centered differencing requires that boundary
conditions be supplied at both ends of the space mesh. For this
purpose a psuedo mesh point is established outside each end of the
space mesh, and it is at these two points that the boundary conditions
are applied. While ﬁany sets of boundary conditions are possible,

one has been chosen for the majority of the present work which com-
bines simplicity with & reasonable correspondence to the limited
knowledge which exists concerning the conditions in the contact

regions of an IMPATT under large-signal operation. At an inflow
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boundary, a Dirichlet condition is applied to each unknown
while at the outflow, a Neumann condition with constant slope
is applied. The outflow condition is chosen to maximize the

accuracy of the finite-difference scheme.*?® The Dirichlet inflow

conditions are

n?
1
= T (3-63)
T N,
v, o= 0 (3.64)
and
V= Vs (3.65)

where Nb is the doping concentration in the contact region. The
inflow conditions describe the state of minority carriers

in a region with zero electric field. They might seem to imply

that no minority current can enter the device, but it is possible

for a finite amount of minority current to cross the device boundary,
which is located halfway between the pseudo point and the first
actual mesh point. This current is small, and the bulk of the
reverse saturation current is provided for by assuming e uniform

rate of thermal generation throughout the device:

Jsat
6, = & (3.66)

where Jsat is the reverse saturation current density, and L is
the device length. Some results with boundary conditions differ-

ing from Eqs. 3.63 through 3.¢5 are presented in Chapter IV,
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3.3.3 The Device-Load Interaction. Updating the electric

field at each time step requires that some relation between the
terminal voltage and current be supplied. One way of doing this is
to convolve the past values of current with the impulse response of

1 This has the obvious

an external circuit after every time step.7
drawback of requiring that many convolution integrals be evaluated
in the course of a simulation. A simple way of centering the current
in the upcoming time step using present terminal voltage exists,>®
but it does not allow the use of simple capacitive branches (such as
an RF source with dc block) in the external circuit. Bauhahn
and Haddag®" impoéed a sinusoidal RF voltage at the device
terminals. While their method requires no circuit tuning or source
adjustment in order to obtain a desired RF terminal voltage amplitude,
it does require iteration on the dc voltage in order to obtain a
desired dc current, and it does not allow the simulation of genuine
transients in connection with realistic external circuits. A state
space approach72 to the device-circuit interaction has been found to
be the most useful in the present work.

The load routine used in the simulation program is designed
to impose a sinusoidal RF voltage on the device terminals in a
self-consistent manner. The circuit model used by the routine is
shown in Fig. 3.2. The diode is represented by a particle current
source J_ in parallel with the diode depletion capacitance Cd
{(normalized to unit area). The external circuit consists of a dc
current source in parallel with an RF voltage source VRF’ series

resistance R, and blocking capacitor C. The strength of JP at any

point in time can be found from
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(3.67)
where L is the device length.

The time evolution of the blocking capacitor voltage Vc and

the diode voltage Vd are given by

ch J
Fraiih (3.68)
and
av
a _ L -
® - oc (T4 040 -9,) (3.69)
where
J = (v -V -V.) (3.70)
R RF c d *

Integrating Eq. 3.68 and 3.69 across a time step using the trapezoidal

rule gives an equation for Vc and Vd at the end of the time step:

— - - — T —
At At t+At At At t
1+ 2rG 5RC Ve 1 - %xre - 2RrC Ve
At At t+At At At t
2RC 1+ 2RC, V3 ~ ZRC, 1- 2RC, | Va
L -‘\.. - L - _J
(1 tea t ]
+At
w (Yer  * V)
+ %3 . (3.71)
1, t+At . .t 1 tat Lt
RCd(VRF *+ Vpp) ¥ Cd(EJdc =Jp )
L o
t+At

In Eq. 3.71, J is known from Eq. 3.67.
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If the external series resistance R is chosen to be zero, the

time evolution of the diode voltage is given by Eq. 3.65, with
- v ) . (3072)

With the use of trapezoidal rule, Egqs. 3.69 and 3.72 give

t+At  _ ot . At t t+AL t+at
v = Vd + [2 (2Jdc -J -J ) + C(V

t
d P P Rt VRF)]/(C + Cd)

(3.73)

when the series resistance is zero.
The form of the circuit in Fig. 3.2 is such as to suppress

unwanted harmonic combonents of the terminal voltage. Bias oscilla-

tions’? and subharmonic instabilities’? can usually be prevented by
choosing an appropriate ratio between C and Cd. The series resistance
serves to damp out transients more quickly than they would otherwise
decay. Usually, a particular steady-state RF voltage amplitude is
desired at the device terminals. The terminal amplitude will differ
somewvhat from that of the RF voltage source, but can be brought to

the desired value by adjustment of the source amplitude.

3.4 Conclusions

Development of an IMPATT simulation program based on finite-
difference approxima*ions to the energy and momentum conserving
transport equations requires careful choice of the numerical methods
used. The methods described in this chapter are efficient and accur-
ate solutions to the numerical problems associated with various parts
of the transport equations.

Explicit finite-difference schemes incorporating forward-

time differences are likely to be unstable in the limit of very
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short time steps. The Lax method has a well-defined stability
requirement which is acceptable from the point of view of efficiency,
but the method introduces an undesirably large amount of numerical
diffusion. This diffusion can be substantially eliminated, without
sacrificing stability, by the use of a scheme of the Lax-Wendroff
type.

Both the first- and second-order present-time forms of the
relaxation terms impose a severe stability restriction on the time
step. The first-order advanced-time form imposes no such restriction,
and its asymptotic behavior is the same as that of the exponential
decay process which has been used to model the effects of collisions.

The simulation program makes use of initial and boundary
conditions which are simple, stable, and consistent with reasonable

assumptions about the conditions which occur in an actual device.
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CHAPTER IV. SIMULATION OF

MILLIMETER-WAVE IMPATT OPERATION

This chapter presents results of several series of
investigations which have been performed using the simulation
program described in the preceeding chapter. The first section
presents dc and large-signal results for situations of electric
field with very small spatial variation. These results permit clear
identification of certain overshoot and relaxation phenomena which
are present, but less clearly identifiable, in simulations of more
realistic IMPATT structures. The results also demonstrate the
appropriateness of certain assumptions made in Chapter II. 1In
Section 4.2 results obtained using the energy and momentum con-
serving simulation are compared with results obteined using
conventional drift-diffusion simulation for the same situationms.
Systematic differences are observed and discussed.

Sections 4.3 and 4.k are concerned with numerical experi-
ments to establish the importance of particular physical mechanisms
to overall device behavior. Section 4.3 is concerned with carrier-
inflow boundary conditions and considers the effects of highly
doped contact regions and injection of "hot" carriers at boundaries.
Section U.4 examines the effects of the cooling of each carrier
distribution due to impact ionization initiated by the other
carrier type.

Section 4.5 is concerned with the implications of the present

study for the potential performance of millimeter-wave Si IMPATTs.
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Performance limitations due tononstatic carrier transport phenomena
and to parasitics external to the active diode are discussed. A
criterion for estimating the upper frequency limit for useful
operation of the IMPATT mode in any material is explained; this

upper limit is estimated to be approximately 500 GHz for Si IMPATTs.

4.1 "Flat Field" Results

Simulation of pn Jjunction devices with spatially uniform
electric field in avalanche breakdown is useful for gaining an under-
standing of the behavior of the solution of the energy and momentum
transport equations in the presence of time and space variations of
the electric field. With flat fields a dc solution shows the behavior
of the transport quantities near a spatial field step (present at
each spatial boundary) in the absence of temporal variations. A
large-signal solution shows the behavior, away from the sy *+ial
boundaries, of the transport quantities under time-varying, spatially
uniform conditions. The responses to spatial and temporal variation
of the field can thus be observed separately.

Simulation results have been obtained for flat-field situations
in devices 1and 0.3 um 1ung, the doping profiles of which are shown
in Fig. U.1. The doping densities are chosen to approximately com-
pensate the space charge of mobile carriers at a dc bias current
density of 10" A/cm?. Figures 4.2 and 4.3 show dc carrier concen-
tration, current density, average velocity, average energy, and
electric field profiles for the two devices. The conventions used
in the figures are used in all results presented in this chapter:
positive electric field eand hole velocity are taken from right to

left, and positive electron velocity from left to right. Electrons
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FIG. 4.1 DOPING PROFILES FOR (a) ium AND (b) 0.3 um

DIODES WITH SPATIALLY CONSTANT FIELD.
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enter each device from the left-hand boundary with concentration,
average velocity, and average energy as described in Chapter III;
holes enter from the right.

The e” :ctron and hole concentrations in the figures increase
monotonically as the carriers traverse each device. This is the
usual situation in a pn Junction under reverse breakdown. The
velocity profiles show that the velocities overshoot their conven-
tional "saturated" values as carriers enter each device, approaching
the conventional values only after the carriers have traveled some
distance past the inflow boundary. These velocity overshoots are
opposed rather than assisted by diffusion down the carrier concen-
tration gradients. Carrier energy is low at inflow boundaries and
substantially "catches up" to the field over the velocity overshoot
distance. Once they have reached equilibrium with the field, velocity
and energy do not change through the remainder of the device length,
even though there is a concentration gradient present. This is in
accordance with the assumption of "uniform" conditions which was
made in Chapter II.

Velocity overshoots similar to those shown in Figs. 4.2 and
4.3 will be present in all of the energy and momentum conserving
results presented in this chapter. The overshoots occur when
carriers enter the depletion region of a reverse-biased diode. 1In
doing so, they pass through an abrupt step in field strength, since
the inflow boundary conditions approximate cocaditions in a low-field
region. Immediately downstream of the step in field, the carriers
have lower average energy than they would have in equilibrium with the

field. At lower energy the electron and hole relaxation times are
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longer, so the relaxation terms in the velocity transport equations
become smaller, and velocity overshoot results.

The figures suggest that the carrier velocities respond much
more quickly to changes in the field than do the carrier energies.
Fach energy can be seen to require some distance over which to
build up in response to the inflow field step. In contrast, the
corresponding velocity overshoots almost immediately, and the distance
over which the overshoot extends corresponds to that over which the
energy is increasing. This indicates that velocity transients are
due primarily to the energy dependence of the velocity relaxation
times. The situation‘of low energy and velocity overshoot which
occurs at each inflow boundary in Figs.4.2 and 4.3 will be referred
to as spatial lag, i.e., the lagging of energy behind a spatial var-
iation in the electric field.

Figures L.4 and 4.5 show profiles of electric field, average
energy, and average velocity in the l-ym flat-field device at various
points in a large-signal RF cycle. The RF terminal voltage is sinu-
soidal with a frequency of 300 GHz and an amplitude of 15 V, which is
Just under half the dc bias voltage of 32 V. The figures show condi-
tions inside the device at 0-, 90-, 180~ and 270-degree phase in
the RF cycle, the phase angles at which the RF terminal voltage or
its time derivative reaches an extremum. These figures show evidence
of spatial lag near the contacts, just as did Figs. 4.2 and 4.3, but
now the region of interest is the center of the device, where the
energies and velocities can be seen to be spatially constant.

The carrier energies in Fig. 4.4 rise and fall under the

influence of the electric field. Figure 4.5 shows that the velocities
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depart from their saturated values of 107 cm/s and 8.5 x 10% cm/s
for holes and electrons, respectively. The departures occur because
of time lag between the local carrier energy and electric field.

At the beginning of the cycle, field strength is increasing with
time, so as energies lag behind the field the velocities overshoot
for the reasons discussed in connection with Figs. 4.2 and L4.3. At
180 degrees, an inverse process takes place. The field strength at
this point is decreasing with time, so the carrier energies, which
lag behind, are larger than those which would occur in carrier-field
equilibrium. At larger energies the momentum relaxation times are
shorter, so the vélocities undershoot their conventional saturated
values. At 90 and 270 degrees the velocities return to their
saturated values because the energies substantially "catch up" to the
slowly changing field strength.

Further evidence for time lag between field strength and
carrier energy is given by Fig. 4.6. This shows the carrier ener-
gies, carrier velocities, and field strength at the center of the
l-ym flat-field device as functions of phase over one RF cycle.

Time lag between the extrema of field and energy is apparent in the
figure, as are the velocity overshoots and undershoots which occur
in times of increasing or decreasing field strength. The time
between an extremum in field and the corresponding one in energy

is approximately 1 ps. The lag between carrier energy and

temporal variation of the electric field will be referred to as

temporal lag.
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4.2 Comparisons Between Conventional and Energy and Momentum

Conserving Results

The results described in the preceeding section indicate
that spatial and temporal lag between carrier energy and electric
field strength occur in results from simulation based on the
energy and momentum conserving transport model. This lag is not
accounted for in conventional simulation based on drift and diffu-
sion, so the nature and degree of its effect on IMPATT operation can
be determined by comparing results from conventional simulation®* with
those from energy and momentum conserving simulation. Comparisons
have been made fof three double-drift IMPATT structures with lengths
of 1, 0.5, and 0.3 um. The three doping profiles are shown in '

Fig. 4.7. They were chosen so that the devices will be strongly

o

punched through at breakdown, and so that the electron and hole

drift transit times will be approximately equal in each device. The

e o ——

conventional drift velocities, ionization rates, and diffusion
coefficients used are given in Appendix A end Fig. 2.k,

Figures 4.8, 4.9, and 4.10 show large-signal admittance results
from the two types of simulation for the 1-, 0.5- and O.3-pm struc- :
tures, respectively. Table 4.1 lists anumber of representative |
operating characteristics. There is very little difference between
the sets of data for the l-um structure. A consistent difference
between corresponding admittance data points can be seen in the
case of the 0.5-um structure; and in the case of the shortest
structure, this difference ismore pronounced. Apparently the extra N
physical effects allowed for in the energy and momentum conserving :b

transport model have a significant effect on the operation of
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FIG. 4.7 DOPING PROFILES FOR (a) 1-um, (b) 0.5-um

AND (c) O.3-pm DOUBLE-DRIFT IMPATTS.
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Table L.1
Sample Results from Large-Signal Simulation

V.
Device Jdc Frequency RF G

n
(um) (A/cm?) (GHz) (V) _(mhos/cm?) (percent) Vac

1 6 x 10" 100 10 - 2.9 x 10° 8.2 30
(- 2.7 x 103)*  (7.8)% (29.9)%
0.5 1 x 10° 140 8 - 6.5 x 10°? 10.4 20.3
‘- 5.3 x 10%) (8.%) (19.9)
0.3 1.5 x 10° 200 6 . 10" 8.6 15.6

1.1 x
(8.1 x 10%) (6.3) (15.0)

¥Results from conventional simulations are shown in parenthesis.
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double-drift Si IMPATTs for device lengths of approximately
0.5 um or less.

The results in Table 4.1 show that the energy and momentum
conserving simulation generally predicts larger dc voltage at a
given operating point than does the conventional simulation. This
is probably an effect of spatial lag. In the energy and momentum
conserving simulation, the low energies at inflow boundaries result
in lower rates of impact ionization than would be predicted by the
conventional transport model. Lower rates near the boundaries must
be compensated for by larger rates in the center of a device, re-
quiring an increaée in field strength and dc terminal voltage. The
occurrence of spatial lag in a double~drift device is shown by
Fig. 4.11, which gives energy, velocity, and field profiles in
the 0.3-pym double-drift device under dc conditions. Carriers enter-
ing the device can be seen to undergo velocity overshoot.

The way in which the admittance results in Figs. 4.9 and
4,10 differ is initially surprising if one intuitively expects that
the inclusion of higher order transport effects in an IMPATT model
will result in poorer device performance. Where the results differ
significantly, the energy'and momentum conserving simulation con-
sistently predicts larger negative conductance, though somewhat lower
optimum frequency, than does the conventional simulation. There are
several mechanisms which may tend to increase negative conductance.
One of these. is delay in the impact ionization process due to energy
lag. This would cause carrier injection to occur later in the RF
cycle. Another mechanism is velocity overshoot and undershoot on s

the part of drifting carriers. This might contribute to negative
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conductance by giving the induced current waveform a more favorable
shape, provided overshoot and undershoot were to occur at the proper
points in the cycle. Changes in velocity might alsc affect the amount
of time that carriers spend in the ionization region, thereby affect-
ing the shape of the injected pulse.

Figures 4.12 through 4.16 provide insight into the mechanisms
which cause increased negative conductance in the energy and momentum
conserving results. The figures present simulation results from the
0.3-um device operating at a frequency of 300 GHz with an RF amplitude
of 10 V. Figure 4,12 is a set of plots of injected and induced
current waveforms'resulting from the two types of simulation. The
sinusoidal terminal voltage is shown for phase reference. The
injected current depicted in the figure is the integral over the
device length of the instantaneous electron and hole generation rates,
taken at each time step. The induced current is the component of
terminal current which flows because of carrier motion in the interior
of the device.

Figure 4.12 shows that the injected current waveforms are very
similar in shape, but the injected current in the energy and
momentum conserving result is delayed by approximately 10 degrees
(or 0.1 ps) in comparison to the conventional result. A similar
delay also appears in the plot of the terminal currents, along with
some difference in shape. Injection delay tends to increase
negative conductance and, by shortening the optimum transit angle,
tends to lower the optimum IMPATT operating frequency. Fig-
ures 4.13 and 4.16 show profiles of carrier concentration, electric

field, average velocity and average energy at four points in the RF
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TERMINARL VOLTAGE

CURRENT DENSITY
KILOAMPS/SQ-CM

FIG. L.

e TR R

500.0

250.0
INJECTED CURRENT
KILOAMPS/SQ-CM

3
(=]

0.0- 800 180.0 270.0 360.0
PHASE ANGLE, DEGREES

*

PR

100.0 200,06 300.0

b

.

0.0

0.0 30.0 180.0 270,0 360.0
PHASE ANGLE, DEGREES

12 TERMINAL VOLTAGE, INJECTED CURRENT, AND

INDUCED CURRENT WAVEFORMS FOR O.3-um

DOUBLE-DRIFT IMPATT. (a) ENERGY AND

MOMENTUM CONSERVING SIMULATION AND

(b) CONVENTIONAL SIMULATION. (f = 300 GHz,

- - 1 2
VRF = 10 V AND Jdc = 1.5 x 10° A/cm?)
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cycle which is shown in Fig. 4,12, The figures show the occurrence
of spatial lag similar to the lag seen in Fig. h.11.

Figures 4.17 and 4.18 show the time variation over one RF
cycle of electric field, average energy, and average velocity at
fixed points inside the device. The locations of the points are
shown by their distances, givenin the figures, from the left-
hand contact. One point is located near each of the two contacts,
and a third near the metallurgical junction. The energy profiles
show temporal lag of approximately 20 degrees between the peak
in field and the peak in majority carrier energy at the points near
the device boundafies. Near the Jjunction, the lag is somewhat less.
The velocity profiles from near the boundaries show undershoot in
majority carrier velocity btetween approximately 200- and 270-degree
phase, and overshoot betweeen approximately 300~ and 30-degree phase.
Similar effects occur near the center of the device, but to a lesser
degree.

The phases of the velocity overshoots and undershoots in
Fig. 4.18 correspond to the phases at which the induced current
waveforms in Fig. 4.12 differ in shape. It appears that the shape
difference in the induced currents is due to undershoots and over-
shoots in velocity, while the lag between the injected and the
induced current waveforms is due to injection delay caused by
energy lag. The shape difference is roughly symmetrical about
a 270-degree phase, s0 it probably does not affect negative conduc-
tance strongly. Evidently the increased negative conductance seen
in energy and momentum conserving results is primarily due to in-

Jection delay caused by energy lag.
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4.3 Effects of Boundary Conditions

Energy and momentum conserving simulation involves the setting
of more boundary conditions than does conventional simulation, so it
is difficult to be certain when conditions used inthe two types of
simulation can be considered equivalent. The boundary conditions
used in obtaining the energy and momentum conserving simulation
results presented thus far were those described in Chapter III. Since
the inflow boundary conditions may influence spatial and temporal
lag, thereby affecting device admittance results, it is important
that their influence be assessed.

One way of setting realistic boundary conditions of the active
region of a device is to add a highly doped contact region to each
end. This allows the energy and velocity of inflowing carriers to
adjust to the field strength in the contacts before the carriers enter
the active region. This procedure is expensive in terms of computer
time. In order that the contact regions be described realistically,
the space step must be made smaller than the Debye length in the
contacts. Numerical stability requires that At be reduced in pro-
portion to Ax, so that the cost of simulation goes roughly as the
square of the number of space steps.

Some simulation of the 0.3-um device with- contacts added
has been performed. The doping profile with contacts is shown in
Fig. 4.19. The Debye length was calculated using’"

1/2
ek T /

- B
Ld = *ﬁ: , (4.1)

where Nc is the doping density in the contacts. At a temperature of
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500°K, the Debye length in the contact regions shown in Fig. 4.19

is approximately 37 . The space steps and time steps for simulation
of the device with contacts were chosen to be 26 & and 0.004 ps,
respectively. This time-step length is short enough to require use
of a Lax-Wendroff type finite-difference scheme, for the reasons
discussed in Chapter III. Overall, adding the contacts shown to the
0.3-um device increases the cost of simulation by more than a factor
of ten.

Figures 4.20 through 4.23 show profiles of electric field,
carrier concentration, average energy, and average velocity at four
points in the RF cycle when the 0.3-um device is operated at 300 GHz
with an RF amplitude of 6 V. Figures L.24 through 4.27 show similar
results with no contacts present. It is evident that the behavior of
the solution of the transport equations across the active region is
nearly identical in the two cases. It may be concluded that it makes
little difference whetﬁeé specific allowance for contact regions is

made or whether the simple boundary conditions described in Chapter

I11 are applied.

k.4 Sources of Fnergy Lag

The two kinds of simulation results shown in Figs. 4.8 through
4.106 diverge more rapidly with decreasing device length than with
increasing frequency. This can be seen from the fact that 100-GHz
results, which have been obtained for each of the three devices,
diverge with decreasing length, while, for a given device, the
difference between the two types of results changes little with

frequency. The way in which the results behave implies that the
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energy lag which gives rise to increased negative conductance becomes
more pronot.nced as device length decreases, but changes comparatively
little with frequency. Factors which might contribute to the length
dependence of energy lag include the inflow boundary conditions on
energy, carrier cooling due to impact ionization by opposing carriers,
and spatial variation of the electric field. Each of these will now
be examined.

Effects of the inflow boundary conditions on spatial lag have
been tested by incorporating "hot" boundaries, in which the inflowing
carriers are assigned three times the thermal energy associated with
the lattice tempefature, in the simulation program. This might be
expected to reduce the amount by which carriers are out of equili-
brium with the field after crossing the field step at the inflow
boundary. Figures 4.28 and 4.29 show resulting profiles of electriec
field, average energy, and average velocity which correspond to
those shown in Figs. 4.2h through 4.27. The similarity between the
corresponding profiles shows that the degree of energy lag has
little to do with the inflow conditions on energy.

Energy lag might also be affected by the cooling of each
carrier distribution by impact ionizations caused by the opposing
carrier type. This possibility will be explained in terms of
electrons. The number of electrons entering a device at the left-
hand boundary is small. Just upstream of the boundary, impact
ionizations initiated by holes may produce a number of electrons
comparable to or greater than the number which actually cross the
boundary. Consequently, the average energy of electrons near the

boundary may be determined for the most part by the low average
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energy of those electrons which are produced by hole ionizations.
This would depress the average energy of the electron distribution
and contribute to spatial lag. The hcle distribution near the right-
hand boundary might be affected in a similar way.

In order to eliminate this "opposite-carrier cooling" effect,
it can be assumed that carriers created by opposite~carrier ioniza-~
tions have exactly the same average energy as those already present.
Then Eq. 2.32 would become

[%l—’]c = (w-w)gE = 0 . (k.2)

T2
Figures 4.30 and 4.31 show electric field, average energy, and average
velocity profiles calculated under the same conditions as were those
shown in Fig. 4.24 through 4.27, except that opposite-carrier cooling
has been eliminated from the simulation program. The change clearly
results in less spatial lag.

These results suggest a reason why, as seen previously, simula-
tion results are relatively insensitive to changes ir the inflow
boundary conditions. The total population of each carrier near its
inflow boundary conditions is dominated by carriers produced by
opposite-carrier ionizations. Average energy and velocity near
inflow boundaries are determined mainly by the energy and velocity
of carriers produced by impact ionizations, and not by the proper-
ties of carriers which cross the inflow boundary. Thus opposite-
carrier cooling has the effect of decoupling the interior of the
device from its inflow boundaries.

Figures 4.32 and L4.33 show admittance results from the 1-

and 0.3-um devices with and without opposite-carrier cooling.
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The removal of cooling from the simulation can be seen to result

in increased negative conductance in both devices, withthe increase
being much more pronounced in the case of the shorter device.
These results are in apparent contradiction to the idea that energy
lag is what causes increased negative conductance in energy and
momentum conserving simulation results. Opposite-carrier cooling
increases the amount cf spatial lag associated with the inflow bound-
aries, but it reduces negative conductance. This can be seen from
comparison of Figs. 4.8 and 4.10 with Figs. 4.32 and 4.33. Spatial
lag associated with opposite-carrier cooling clearly does not cause
the observed divefgence between simulation results. Instead, it
tends to counteract the effects of whatever does give rise to the
divergence.

The mechanism which does cause the two types of results to
diverge is probably associated with the spatial gradient of electric
field strength inside the double-drift devices. In contrast to the
flat-field structures considered in Section U.1l, the double-drift
structures described in Section 4.2 are doped heavily enough to
give considerable slope to the field strength. The slope in field
gives rise to a kind of distributed energy lag whose degree increases
with the steepness of the slope, hence with increasing doping con-
centration. This will now be described in more detail.

The total time rate of change in field strength seen by a
moving carrier consists not only of the time rate of change of
field at the current position of the carrier, but also of the change
seen by the carrier as it moves through spatial variations inthe

field. The total rate of change is given by
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During much of the buildup of the inJected pulse, the carrier current
densities are smsall, and the time partial of the electric field is
approximately equal to the time partial of the terminal voltage divided
by the device length. When the vdltage is sinusoidal, the maximum of

the time partial of the field at angular frequency w is given by

wV.
oF RF (h.4)

at L

and occurs at O-degree phase. When the carrier density is small, the
space partial of the field is related to the doping density by
Poisson's equation:

3 _ i
X € (4.5)

For electrons in the p layer of the l-uym double-drift device
at a frequency of 100 GHz and an RF amplitude of 10 V, Eq. 4.3 becomes

dE

rreli 6.3 x 10'% V/emss + 1.2 x 107 V/cmes (4.6)

where it is assumed that u is 8.5 x 10® cm/s. Similarly, in the
0.3-pm device at an amplitude of 6 V, the equation becomes

dE

& - 1-3x 10}7 V/emes + 2.9 x 10'7 V/emes . (4.7)

Equations 4.6 and 4.7 show that the total time rate of change
of field seen by a moving carrier at a given frequency is much larger
in the 0.3-ym device than in the 1-uym device. The equations also

show that, even at the moment when the time partial of the field is
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at its maximum, the spatial gradient of field contributes the

majority of the total rate of change seen by a moving carrier.

The greater the total rate of change, the greater the lag between
carrier energy and field, so that at the center of the 0.3~-um

device the ionization rates peak later in the RF cycle than in the
l1-um device, giving rise to more injection delay and a larger i.crease

in negative conductance relative to the conventional result.

4.5 Limitations on IMPATT Performance

The simulation results presented in this chapter indicate that
Si diodes will support operation of the IMPATT mode at frequencies up
to at least 300 GHz. It will be shown in this section that the
material properties do eventually impose a fundamental upper frequency
limit on IMPATT operation. The frequency at which this limit lies
can be estimated for any material by use of the energy balance rela-
tion and is in the submillimeter-wave region for Si devices. This
section also discusses why the simulation predicts millimeter-wave
device efficiencies which are in excess of those which are obtained
in experiment. It is shown that this can be fully explained by the
presence of parasitic series resistance external to the active
IMPATT layer.

The existence of an upper frequency limit for IMPATT operation
is a result of the way in which carrier energy responds to the time
variation of the electric field. The simple energy balance rela-
tion, which accounts for energy gain from the field and loss to
lattice collisions, provides an approximate description of the

energy response:
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If u is constant and the time-varying component of the field is given

by the resl part of Eoelwt

of energy is

T
W iwt
elT s o quue . (L.9)

w = R

The energy response given by Eq. 4.9 follows the familiar
single-pole transfer function. A Bode plot75 for the normalized
response is shown in Fig. 4.34. The plot shows that the ampl’tude of
the response is down by a factor of two at a frequency of 1/2ﬂrw.

In view of the rapid variation of the ionization rates with energy
which is shown in Fig. 2.3, it appears that IMPATT mode operation will
be seriously degraded at this frequency because of reduced particle
current modulation. The response begins to roll off an octave lower,
implying that material properties (specifically the energy relaxa-
tion time) will impose an upper frequency limit of approximately
l/lmrw for substantially undegraded IMPATT operation.

Figure 4.34 also shows the increasing phase lag between
energy and field as frequency increases. Lippens and Constant™?
have used the energy balance relation to support previously pub-
lished findings from this work which pointed to energy lag as the
reason for predictions of increased negative conductance in energy
and momentum conserving simulation results. Lippens and Constant
suggested that the findings could be explained in terms of the phase
lag shown in the figure. While their conclusion that the phase lag

in itself tends to make IMPATT operation more efficient is valid,
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they overlooked the roll off in the energy response which is
predicted by the energy balance relation. It should be noted
that the simple balance relation fails to allow for spatial inhomo-
geneities. In fact, as previously noted, spatial field gradients
are apparently the principal reason for differences between
conventional and energy and momentum conserving simulation results
for submicron IMPATT devices.

While analysis involving the energy balance relation is

approximate, a more detailed analysis would not invalidate the

conclusion that the energy response will roll off at high frequencies.

Equation 4.9 prediéfs that the frequency at which roll off begins
is approximately l/hntw. The energy relaxation time for electrons
in Si was estimated in Chapter II to be approximately 0.15 ps
over a broad range of energy, implying that IMPATT mode operation
in Si will deteriorate substantially at frequencies above 500 GHz.
This roll off in the energy response may be the reason why the two
admittance curves in Fig. 4.10 cross just below 500 GHz.

The best reported experimental efficiencies for millimeter-
wave Si IMPATTs are 1 percent or less at frequencies above 150
GHz.’® This is much lower than the efficiencies routinely obtained
from microwave devices. The results of this study suggest that this
is not due to an intrinsic failure of the IMPATT mode in Si at
millimeter-wave frequencies. An alternative explanation is that
parasitic losses are responsible for low millimeter-wave efficien-
cies and constitute the major limitation on the experimental per-
formance of millimeter-wave IMPATT diodes. Sources of parasitic

loss include undepleted substrate layers in diode structures,
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ohmic contact resistance, series resistance of bond wires, and other
circuit losses. Loss mechanisms which are unimportant at lower
frequencies may become important in the millimeter-wave range be-
cause of skin effects, surface scattering effects, and reductions

in carrier mobility due to velocity relaxation.

A detailed analysis of parasitic loss is outside the scope
of this study, but the effect of loss can be estimated by placing
an equivalent parasitic resistance in series with the "intrinsic"
diode. Figure 4,34 shows both "intrinsic" negative resistance and
efficiency in the presence of various values of series resistance
as functions of RF amplitude for the 0.3 um device operating at
300 GHz. A device diameter of 0.5 mil is assumed. "Intrinsic"
efficiency as predicted by conventional simulation is also shown.
The peak efficiency predicted by energy and momentum conserving
simulation is much greater than that predicted by conventional
simulation, and both efficiencies are 1$rge enough to indicate
little deterioration in the operation of the IMPATT mode in Si
at frequencies up to 300 GHz. The presence of parasitic resistance

can be seen to reduce efficiency drastically.

4.6 Summary and Conclusions

Simulation results show that the additional physical effects
allowed for in the energy and momentum conserving transport model
cause the average energy of carriers to lag behind the local electric
field. Energy lag can occur in space, downstream of abrupt changes
in field, or it can occur in time, in the presence of rapid time
variation of field. Energy lag gives rise to overshoots and under-

shoots in carrier velocity as compared to conventional field-dependent
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drift velocity. Local departures from the conventional velocity
can be large, but tend to affect minority carriers rather than
majority carriers in IMPATTs, so their effect on device terminal
admittance is generally small.

As the double-drift device length becomes less than 0.5 um,
energy and momentum conserving simulation predicts substantially
better IMPATT performance than does conventional simulation. A
TO-percent difference in predicted optimum efficiency at 300 GHz
has been observed. Differences in predicted performance appear to
be due to injection delay caused by the lag between the carrier
energy and the electric field. This lag appears to be caused by
spatial field gradients.

Simulation results are relatively insensitive to boundary
conditions on carrier energy, and the boundary conditions described
in Chapter II have been found to give results consistent with those
obtained incorporating realistic contact regions. The degree of
carrier cooling which results from impact ionization by opposing
carriers is of more importance to device behavior than boundary
conditions. This cooling increases the amount of spatial energy
lag and reduces negative conductance.

Simulation results predict greater millimeter-wave device
efficiencies than are observed in experiment. This can be accounted
for by the presence of modest amounts of parasitic series resistance.
It 1s apparently such resistance, rather than a deterioration of
IMPATT mode operation at high millimeter-wave frequencies, that
limits the performance of experimental devices. In the absence

of parasitic loss, the upper frequency of operation of the IMPATT

-129-

. r—————-
ik T T e A———— -

R

Foghias B> AN

o emeem e 1




. el e e e e o L e s e

«

-, -

-0 TR~ NG e~ -

- — -

e e o o e

mode would be subject to a fundamental limit which is set by
material properties. This limit is estimated to be approximately

500 GHz for Si devices.
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CHAPTER V. SUMMARY, CONCLUSIONS,

AND SUGGESTIONS FOR FURTHER RESFARCH

5.1 Summary and Conclusions

The purpose of this study was to develop and apply a new
class of semiconductor device simulation which is more general than
existing drift-diffusion based simulations, and to use the simula-
tion to investigate the "intrinsic" properties of millimeter-
wave Si IMPATTs. A self-consistent bipolar energy and momentum
conserving simulation has been developed for this purpose. The
work that was performed falls into three categories: model defini-
tion, model implementation, and model utilization. The overall
effort is believed to be the first reported application of a self-
consistent bipolar energy and momentum conserving transport model
to semiconductor device simulation.

Work performed in the category of model definition was
described in Chapter II of this dissertation. The charge-transport
model developed consists of transport equations for electron and
hole concentration, average velocity, and average energy as
functions of time and space. It provides a second-order descrip-
tion of the carrier-velocity distributions, and allows the dis-
tributions to evolve in space and time in a self-consistent manner.
This is in contrast to the conventional model based on drift and
diffusion, which implicitly assumes that the distributions are always

in equilibrium with the local electric field.
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The transport equations themselves are the zeroth, first, and
second velocity moments of the phase-space transport equation. Except
for the terms describing the effects of collisions, the equations were
obtained by application of the method of moments. The collision terms
were not obtained in this way because the form of the phase-space
collision term for carriers in Si is not sufficiently well known
to permit the taking of velocity moments. Instead, forms for the
collision terms were chosen in such a way as to allow for their
dependence on the concentration, average energy, and average
velocity. The collision parameters used in the model are energy-
dependent relaxation 'times for energy and velocity, and energy-
dependent, per-unit-time impact ionization rates. The latter are
more fundamental than the conventional per-unit-distance ionization
rates because they do not assume any correlation between the average
carrier energy, which determines the number of ionizations taking
place per unit time, and the average velocity, which determines the
distance traveled in the average time between ionizations.

The parameters were given numerical values by simplifying
the transport equations to describe the situation of a spatially
uniform, dc electric field, and requiring that results from the
simplified equations be consistent with experimentally known values
of electron and hole drift velocities and ionization rates. Mapping
the parameters onto the carrier energies was accomplished through
use of a theoretically determined equilibrium relationship between
the carrier energies and the electric field. The hole and electron
energy relaxation times determined in this way were approximately

0.075 and 0.15 ps, respectively, over much of the carrier energy
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range considered. The velocity relaxation times were found to
range from twice the energy relaxation times at low energies to
less than 0.02 ps at high energies.

A correspondence between the energy and momentum conserving
transport model and the conventional drift-diffusion model was
established. This showed that, under the conditions of slow space
and time variation of the electric field, the conventional diffu-
sion coefficient can be written in terms of the velocity relaxation
time and the temperature of the carrier distribution. The result-
ing estimates for the electron and hole diffusion coefficients as
functions of the electric field drop off considerably from their
low-field values as field strength increases. The energy and
momentum conserving model was also compared to other nonconventional
models which have been applied to modeling of IMPATTs. The latter
were shown to be less complete and less self-consistent than the
energy and momentum conserving model.

Computer implementation of the transport model using finite-
difference techniques was described in Chapter III. A set of
normalizations was developed which (for constant time and space
step) eliminates the time step, the space step, and several phy-
sical constants from the finite-difference equations. Stability
analysis of various finite-difference schemes showed that many
explicit forms of the energy and momentum comserving transport
equations are unstable when the time step is short in comparison
to the relaxation times, and other stable forms may exhibit
A scheme of

undesirably large amounts of numerical diffusion.

the Lax-Wendroff type was found to be capable of giving stability
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and minimal numerical diffusion for all time-step lengths. It

was further shown that, when the time step is sufficiently long,
certain more efficient schemes which are otherwise unstable can be
made stable by the use of an advanced-time form of the energy

and velocity relaxation terms.

Chapter IV presented results of computer simulation of
millimeter-wave Si avalanche diode structures. Simulation of low-
doped diodes with spatially uniform electric field shows that
rapid field changes in space (such as at the boundaries of deple-
tion regions) and time( as in the presence of large-signal RF
terminal voltages) caﬁ give rise to nonequilibrium between the
carrier velocity distribution and the electric field. Such non-
equilibrium manifests itself in the form of lag between the carrier
energy and local electric field, and gives rise to velocity over-
shoot or undershoot. The length of the distance over which the
minority carrier distribution adjusts itself to a field step in
space was shown to be strongly affected by the initial temperature
assigned to carriers generated by impact ionization by carriers of
the "opposing” type.

Energy and momentum conserving simulation results were found
to diverge significantly from conventional results as device length
becomes less than 1 uym. Energy and momentum conserving results
predict greater negative conductance than conventional results,
apparently because of increased injection delay caused by leg
between the carrier energies and the electric field. The amount
by which the two types of results diverge depends more strongly

on device length than upon operating frequency. This is apparently
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due to the increased field gradients which occur as device length
decreases. Differences between predicted performances at optimum
RF amplitude are particularly large.

Simulation results showed no degradation in operation of the IMPATT
mode in Si at frequencies up to 300 GHz. Calculations based on the
energy balance relation predicted that the IMPATT mode in Si will
begin to degrade as frequency exceeds 500 GHz because the carrier
energies will cease to respond to time variation of the electric
field. The millimeter-wave efficiencies predicted by simulation
results are well in excess of those which have been obtained in
experiment. This'strongly suggests that parasitic loss, rather than
failure of the intrimnsic IMPATT mode, is the factor which presently

limits the performance of the current state-of-the-art devices.

5.2 Suggestions for Further Research

The present investigation has laid a foundation for a variety
of further work. Suggestions for further research can be considered
in three categories: transport modeling, numerical methods, and
device simulation.

The most obvious extension in the categoryv of transport model-
ing is to incorporate nonequivalent conduction band valleys. This
would extend the applicability of the simulation to III-V compounds
such as GaAs and InP, which are widely used to fabricate high-
performance semiconductor devices. It is known that certain relaxa-
tion times in GaAs and InP are much longer than those encountered
in S1,”7 and so "transient" effects will probably be of importance

at lower frequencies and in larger devices than is the case £6r Si.
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The forms of the equations for the multi-valley case have been

7 However, compared to the single~

presented by Blotekjaer.“
valley situation, additional relaxation times are needed to char-
acterize intervalley transfer. These cannot be determined by the
method used in Chapter II (i.e., requiring consistency with
experimental measurements), and, as discussed below, will have to

be obtained in some other way. Work on extending the energy and
momentum conserving model to transport in GaAs is currently underway
within the Electron Physics Laboratory.

Under low-field conditions calculation of the required
additional relaxation times is reasonably straightforward, using
statistical Monte Carlo simulation or the Rees iterative technique.“‘
Existing theoretical calculations seem to be inconsistent with
experimental observations for intermediate and high fields-- ;
typically above 20 kV/cm. (One example is the calculation by
Jacoboni et al.”’® of mean carrier energies of the order of 0.5 eV
at a field of 100 kV/em. This implies significant impact ionization
at this field, something which is not observed in practice.) The
discrepancy between theory and experiment may be due to neglect of
the intra-collisional field effect.’® A major priority for future
transport modeling should be transport characterization including '
impact ionization and the intra-collisional field effect. The
deterministic Rees iterative technique is probably best suited for
transport characterization and parameter evaluation, since it
avoids the large statistical variance associated with Monte Carlo

characterization of "rare" events such as impact ionization, and
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is also well suited to describing nonlinear effects such as
transport in degenerate semiconductors and Auger recombination.

Additional work in the area of numericael methods should
include the extension to two spatial dimensions. This will probably
not present fundamental problems; the stability criteria for finite-
difference approximations to the two-dimensional transport equations
should be similar to those established in this work for the one-~
dimensional case, and techniques for the rapid solution of the two-
dimensional Poisson's equation are now well established.®? The
extension to two dimensions would permit energy and momentum con-
serving simulatioﬁ of transistor structures. Another extension of
the simulation would be incorporation of a nonzero heat flow
vector. It does not appear that this would be difficult, although
stability of proposeé finite-~difference equations incorporating a
description of heat flow should be examined using the techniques
applied in Chapter III. TPFinally, renewed attention could be given
to the prospects of obtainingan implicit or semi-implicit numerical
scheme whose stability would permit use of longer time steps. The
advantage of sucha scheme is not certain, however, since time-step
size is limited by accuracy requirements even for unconditionally
stable schemes.

The application of energy and momentum conserving simulation
to semiconductor device modeling is in its infancy. Advances in
technology have only recently made possible the fabrication of
devices so small that traditional drift-diffusion simulation pro-
vides a generally inappropriate description. The overshoot

effects in small devices can be described using parameterigzed
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distributions as in the present work, or using "exact"
distributions. The former approach is much less expensive.

Only when a case can be made that the "fine structure” of the
distribution is significant (as in the Jones-Rees effect®! in Gunn
diodes) does it seem worthwhile attempting to use "exact" distri-
bution models. The previously mentioned extensions to the present
work would yield an energy and momentum conserving simulation
applicable to a wide range of semiconductor devices, and could provide
answers to many questions of current interest in the field of sub-
micron electronics. Possible one-dimensional simulation investi-
gations include simulation of other transit-time devices (including
TUNNETTs and transferred electron devices) and investigation of

the large-signal RF properties of nn* junctions. A two-dimensional
simulation could be used to model short-channel effects in MESFETs
and MOSFETs, and to examine the feasibility of proposed "novel"
transistors such as the ballistic transistor®? and planar doped
barrier transistor.®® Overall, energy and momentum conserving
simulation seems likely to become the standard approach of sub-
micron semiconductor device modelers.

The most significant means of comparison between conventional
and energy and momentum conserving'IMPATT simulation results may
be to compare on the basis of maximum obtainable efficiency. A
logical extension of the work presented'in this study would be to
use the two types of simulation to search for optimum IMPATT
structures and large-signal operating points as functions of

frequency over the millimeter-wave range.
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APPENDIX A. MATERIAL PARAMETERS

The material parameters used throughout this study pertain
to 8i at a lattice temperature of 500°K. The diffusion coefficients
used in all drift-diffusion simulation are those given in Fig. 2.4.
Static ionization rates®® are given in Table A.l. Table A.2 gives

static drift velocities, and Table A.3 lists a number of other

parameters.
Table A.1l
Static Ionization Ratesg®*
a(E) = A exp (~ b/E) em™?
Quantity Holes' Electrons E (kV/cm)
A (em™ ) 2.0 x 108 2.6 x 10° 0 < E < 2ho
2.0 x 10° 6.2 x 10° 240 < E < 530
5.6 x 10° 5.0 x 10% E > 530
b (kV/em) 2.17 x 10 1.69 x 10° 0 < E < 240
2.17 x 10> 1.31 x 10° 240 < E < 530
1.5% x 10 1.25 x 108 E > 530
Table A.2
Static Drift Velocity®
Vo(E) = v . [1 - exp (- ulEI/vsat)] cm/s
Quantity Holes Electrons
7 6
Voat (cm/s) 1.02 x 10 8.5 x 10
u (em?/Ves) 250 550
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Table A.3

Other Parameters

Quantity Symbol Value
Dielectric constant € 1.04 x 10~*2 F/em
Ionization threshold Ec 2.0 eV
energy
Optical phonon Aw 0.056 eV
energy ]
Effective mass m 4.55 x 10~3! kg (holes)

Mean free path

8.84 x 103! kg (electrons) :

A 60 & (holes)
80 & (electrons)

-

i
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